Machine learning approach to detect dynamical states from recurrence measures
- URL: http://arxiv.org/abs/2401.10298v2
- Date: Wed, 20 Mar 2024 09:11:26 GMT
- Title: Machine learning approach to detect dynamical states from recurrence measures
- Authors: Dheeraja Thakur, Athul Mohan, G. Ambika, Chandrakala Meena,
- Abstract summary: We implement three machine learning algorithms Logistic Regression, Random Forest, and Support Vector Machine for this study.
For training and testing we generate synthetic data from standard nonlinear dynamical systems.
We illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyper-chaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her from the data of their light curves.
Related papers
- Nonlinear time-series embedding by monotone variational inequality [6.992239210938067]
We introduce a new method to learn low-dimensional representations of nonlinear time series without supervision.
The learned representation can be used for downstream machine-learning tasks such as clustering and classification.
arXiv Detail & Related papers (2024-06-11T02:19:31Z) - Extrapolating tipping points and simulating non-stationary dynamics of
complex systems using efficient machine learning [2.44755919161855]
We propose a novel, fully data-driven machine learning algorithm based on next-generation reservoir computing to extrapolate the bifurcation behavior of nonlinear dynamical systems.
In doing so, post-tipping point dynamics of unseen parameter regions can be simulated.
arXiv Detail & Related papers (2023-12-11T10:37:28Z) - Automatically identifying ordinary differential equations from data [0.0]
We propose a methodology to identify dynamical laws by integrating denoising techniques to smooth the signal.
We evaluate our method on well-known ordinary differential equations with an ensemble of random initial conditions.
arXiv Detail & Related papers (2023-04-21T18:00:03Z) - Learning the Dynamics of Sparsely Observed Interacting Systems [0.6021787236982659]
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series.
By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression.
arXiv Detail & Related papers (2023-01-27T10:48:28Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.