Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies
- URL: http://arxiv.org/abs/2401.10348v1
- Date: Thu, 18 Jan 2024 19:28:26 GMT
- Title: Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies
- Authors: Gang Qu, Anton Orlichenko, Junqi Wang, Gemeng Zhang, Li Xiao, Aiying
Zhang, Zhengming Ding, Yu-Ping Wang
- Abstract summary: Gated Graph Transformer (GGT) framework designed to predict cognitive metrics based on Functional Connectivity (FC)
Empirical validation on the Philadelphia Neurodevelopmental Cohort (PNC) underscores the superior predictive prowess of our model.
- Score: 39.82681427764513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional connectivity (FC) as derived from fMRI has emerged as a pivotal
tool in elucidating the intricacies of various psychiatric disorders and
delineating the neural pathways that underpin cognitive and behavioral dynamics
inherent to the human brain. While Graph Neural Networks (GNNs) offer a
structured approach to represent neuroimaging data, they are limited by their
need for a predefined graph structure to depict associations between brain
regions, a detail not solely provided by FCs. To bridge this gap, we introduce
the Gated Graph Transformer (GGT) framework, designed to predict cognitive
metrics based on FCs. Empirical validation on the Philadelphia
Neurodevelopmental Cohort (PNC) underscores the superior predictive prowess of
our model, further accentuating its potential in identifying pivotal neural
connectivities that correlate with human cognitive processes.
Related papers
- NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes [4.362614418491178]
We introduce the concept of topological detour to characterize how a ubiquitous instance of FC is supported by neural pathways (detour) physically wired by SC.
In the clich'e of machine learning, the multi-hop detour pathway underlying SC-FC coupling allows us to devise a novel multi-head self-attention mechanism.
We propose a biological-inspired deep model, coined as NeuroPath, to find putative connectomic feature representations from the unprecedented amount of neuroimages.
arXiv Detail & Related papers (2024-09-26T03:40:12Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
Cross-frequency coupling (CFC) is associated with information integration across populations of neurons.
We construct a model of CFC which predicts a computational role for observed $theta - gamma$ oscillatory circuits in the hippocampus and cortex.
We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses.
arXiv Detail & Related papers (2022-04-05T17:13:36Z) - Learning to Model the Relationship Between Brain Structural and
Functional Connectomes [16.096428756895918]
We develop a graph representation learning framework to model the relationship between brainobjective connectivity (SC) and functional connectivity (FC)
A trainable graph convolutional encoder captures interactions between brain regions-of-interest that mimic actual neural communications.
Experiments demonstrate that the learnt representations capture valuable information from the intrinsic properties of the subject's brain networks.
arXiv Detail & Related papers (2021-12-18T11:23:55Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static backbone.
We present a graph neural network (GNN) framework to describe functional interactions based on structural anatomical layout.
We show that GNNs are able to capture long-term dependencies in data and also scale up to the analysis of large-scale networks.
arXiv Detail & Related papers (2020-10-14T15:01:21Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.