Learning to Model the Relationship Between Brain Structural and
Functional Connectomes
- URL: http://arxiv.org/abs/2112.09906v1
- Date: Sat, 18 Dec 2021 11:23:55 GMT
- Title: Learning to Model the Relationship Between Brain Structural and
Functional Connectomes
- Authors: Yang Li, Gonzalo Mateos, Zhengwu Zhang
- Abstract summary: We develop a graph representation learning framework to model the relationship between brainobjective connectivity (SC) and functional connectivity (FC)
A trainable graph convolutional encoder captures interactions between brain regions-of-interest that mimic actual neural communications.
Experiments demonstrate that the learnt representations capture valuable information from the intrinsic properties of the subject's brain networks.
- Score: 16.096428756895918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in neuroimaging along with algorithmic innovations in
statistical learning from network data offer a unique pathway to integrate
brain structure and function, and thus facilitate revealing some of the brain's
organizing principles at the system level. In this direction, we develop a
supervised graph representation learning framework to model the relationship
between brain structural connectivity (SC) and functional connectivity (FC) via
a graph encoder-decoder system, where the SC is used as input to predict
empirical FC. A trainable graph convolutional encoder captures direct and
indirect interactions between brain regions-of-interest that mimic actual
neural communications, as well as to integrate information from both the
structural network topology and nodal (i.e., region-specific) attributes. The
encoder learns node-level SC embeddings which are combined to generate (whole
brain) graph-level representations for reconstructing empirical FC networks.
The proposed end-to-end model utilizes a multi-objective loss function to
jointly reconstruct FC networks and learn discriminative graph representations
of the SC-to-FC mapping for downstream subject (i.e., graph-level)
classification. Comprehensive experiments demonstrate that the learnt
representations of said relationship capture valuable information from the
intrinsic properties of the subject's brain networks and lead to improved
accuracy in classifying a large population of heavy drinkers and non-drinkers
from the Human Connectome Project. Our work offers new insights on the
relationship between brain networks that support the promising prospect of
using graph representation learning to discover more about human brain activity
and function.
Related papers
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies [39.82681427764513]
Gated Graph Transformer (GGT) framework designed to predict cognitive metrics based on Functional Connectivity (FC)
Empirical validation on the Philadelphia Neurodevelopmental Cohort (PNC) underscores the superior predictive prowess of our model.
arXiv Detail & Related papers (2024-01-18T19:28:26Z) - Brain Networks and Intelligence: A Graph Neural Network Based Approach to Resting State fMRI Data [2.193937336601403]
We present a novel modeling architecture called BrainRGIN for predicting intelligence (fluid, crystallized, and total intelligence) using graph neural networks on rsfMRI derived connectivity matrices.
Our approach incorporates a clustering-based embedding and graph isomorphism network in the graph convolutional layer to reflect the nature of the brain sub-network organization.
arXiv Detail & Related papers (2023-11-06T20:58:07Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.