Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction
- URL: http://arxiv.org/abs/2112.05313v1
- Date: Fri, 10 Dec 2021 03:21:19 GMT
- Title: Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction
- Authors: Yijun Lin, Yao-Yi Chiang, Meredith Franklin, Sandrah P. Eckel, Jos\'e
Luis Ambite
- Abstract summary: We present a novel deep learning architecture that incorporates theories of spatial statistics into neural networks.
DeepLATTE contains an autocorrelation-guided semi-supervised learning strategy to enforce both local autocorrelation patterns and global autocorrelation trends.
We conduct a demonstration of DeepLATTE using publicly available data for an important public health topic, air quality prediction in a well-fitting, complex physical environment.
- Score: 1.2862507359003323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many scientific prediction problems have spatiotemporal data- and
modeling-related challenges in handling complex variations in space and time
using only sparse and unevenly distributed observations. This paper presents a
novel deep learning architecture, Deep learning predictions for
LocATion-dependent Time-sEries data (DeepLATTE), that explicitly incorporates
theories of spatial statistics into neural networks to address these
challenges. In addition to a feature selection module and a spatiotemporal
learning module, DeepLATTE contains an autocorrelation-guided semi-supervised
learning strategy to enforce both local autocorrelation patterns and global
autocorrelation trends of the predictions in the learned spatiotemporal
embedding space to be consistent with the observed data, overcoming the
limitation of sparse and unevenly distributed observations. During the training
process, both supervised and semi-supervised losses guide the updates of the
entire network to: 1) prevent overfitting, 2) refine feature selection, 3)
learn useful spatiotemporal representations, and 4) improve overall prediction.
We conduct a demonstration of DeepLATTE using publicly available data for an
important public health topic, air quality prediction, in a well-studied,
complex physical environment - Los Angeles. The experiment demonstrates that
the proposed approach provides accurate fine-spatial-scale air quality
predictions and reveals the critical environmental factors affecting the
results.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - FlashST: A Simple and Universal Prompt-Tuning Framework for Traffic Prediction [22.265095967530296]
FlashST is a framework that adapts pre-trained models to generalize specific characteristics of diverse datasets.
It captures a shift of pre-training and downstream data, facilitating effective adaptation to diverse scenarios.
Empirical evaluations demonstrate the effectiveness of FlashST across different scenarios.
arXiv Detail & Related papers (2024-05-28T07:18:52Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life
Prediction [1.831835396047386]
This study presents the Spatio-Temporal Attention Graph Neural Network.
Our model combines graph neural networks and temporal convolutional neural networks for spatial and temporal feature extraction.
Comprehensive experiments were conducted on the C-MAPSS dataset to evaluate the impact of unified versus clustering normalization.
arXiv Detail & Related papers (2024-01-29T08:49:53Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
We study spatial-temporal forecasting for a region of interest without any historical observations.
We propose a model named STSM for the task.
Our key insight is to learn from the locations that resemble those in the region of interest.
arXiv Detail & Related papers (2024-01-19T06:26:05Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.