論文の概要: M2ORT: Many-To-One Regression Transformer for Spatial Transcriptomics
Prediction from Histopathology Images
- arxiv url: http://arxiv.org/abs/2401.10608v1
- Date: Fri, 19 Jan 2024 10:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 16:21:43.502816
- Title: M2ORT: Many-To-One Regression Transformer for Spatial Transcriptomics
Prediction from Histopathology Images
- Title(参考訳): M2ORT : 病理像からの空間転写学予測のための多対一回帰変換器
- Authors: Hongyi Wang, Xiuju Du, Jing Liu, Shuyi Ouyang, Yen-Wei Chen, Lanfen
Lin
- Abstract要約: M2ORTは病理像の階層構造に対応する多対一回帰変換器である。
我々は3つのパブリックSTデータセット上でM2ORTを試験し、実験結果から、M2ORTが最先端の性能を達成できることが示されている。
- 参考スコア(独自算出の注目度): 17.158450092707042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of Spatial Transcriptomics (ST) has facilitated the
spatially-aware profiling of gene expressions based on histopathology images.
Although ST data offers valuable insights into the micro-environment of tumors,
its acquisition cost remains expensive. Therefore, directly predicting the ST
expressions from digital pathology images is desired. Current methods usually
adopt existing regression backbones for this task, which ignore the inherent
multi-scale hierarchical data structure of digital pathology images. To address
this limit, we propose M2ORT, a many-to-one regression Transformer that can
accommodate the hierarchical structure of the pathology images through a
decoupled multi-scale feature extractor. Different from traditional models that
are trained with one-to-one image-label pairs, M2ORT accepts multiple pathology
images of different magnifications at a time to jointly predict the gene
expressions at their corresponding common ST spot, aiming at learning a
many-to-one relationship through training. We have tested M2ORT on three public
ST datasets and the experimental results show that M2ORT can achieve
state-of-the-art performance with fewer parameters and floating-point
operations (FLOPs). The code is available at:
https://github.com/Dootmaan/M2ORT/.
- Abstract(参考訳): 空間転写学(Spatial Transcriptomics, ST)の進歩により, 組織像に基づく遺伝子発現の空間的プロファイリングが促進された。
STデータは腫瘍の微小環境に関する貴重な知見を提供するが、買収コストは高い。
したがって、デジタル病理画像から直接ST表現を予測することが望ましい。
現在の手法では、デジタル病理画像に固有のマルチスケール階層データ構造を無視する既存の回帰バックボーンを採用することが多い。
この限界に対処するために,マルチスケール特徴抽出器を用いて病理像の階層構造を満足する多対一回帰トランスフォーマであるm2ortを提案する。
1対1のイメージラベルペアで訓練された従来のモデルとは異なり、M2ORTは異なる倍率の複数の病理画像を受け入れ、トレーニングを通じて多対1の関係を学ぶことを目的として、対応する共通ST領域での遺伝子発現を共同で予測する。
我々は3つのパブリックSTデータセット上でM2ORTを試験し、実験結果から、M2ORTはパラメータが少なく、浮動小数点演算(FLOP)で最先端のパフォーマンスを達成できることが示された。
コードはhttps://github.com/dootmaan/m2ort/。
関連論文リスト
- M2OST: Many-to-one Regression for Predicting Spatial Transcriptomics from Digital Pathology Images [16.19308597273405]
病理画像の階層構造に対応する多対一回帰変換器M2OSTを提案する。
1対1のイメージラベルペアで訓練された従来のモデルとは異なり、M2OSTはデジタル病理画像の異なるレベルからの複数の画像を使用して、共通の対応する領域における遺伝子発現を共同で予測する。
M2OSTはパラメータが少なく、浮動小数点演算(FLOP)で最先端のパフォーマンスを実現することができる
論文 参考訳(メタデータ) (2024-09-23T15:06:37Z) - Enhanced Self-supervised Learning for Multi-modality MRI Segmentation and Classification: A Novel Approach Avoiding Model Collapse [6.3467517115551875]
多モードMRI(Multi-modality magnetic resonance imaging)は、コンピュータ支援診断のための補完的な情報を提供する。
従来のディープラーニングアルゴリズムは、病変をセグメント化し、磁気共鳴画像で疾患を分類する特定の解剖学的構造を特定するのに適している。
自己教師付き学習(SSL)は、事前学習によりラベル付きデータから特徴表現を効果的に学習することができ、自然画像解析に有効であることが示されている。
ほとんどのSSLメソッドはマルチモードMRIの類似性を無視し、モデルが崩壊する。
ハイブリッドマスクパターン(HMP)とピラミッドバーローツイン(PBT)を組み合わせた多モードMRIマスク自動エンコーダの確立と検証を行った。
論文 参考訳(メタデータ) (2024-07-15T01:11:30Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - Enhancing CT Image synthesis from multi-modal MRI data based on a
multi-task neural network framework [16.864720020158906]
拡張型Transformer U-Netアーキテクチャに基づく多目的マルチタスクニューラルネットワークフレームワークを提案する。
我々はCT画像を個別のサブタスクに分解する従来の問題を分解する。
マルチモーダルデータを扱う際のフレームワークの汎用性を高めるため,複数の画像チャネルでモデルを拡張した。
論文 参考訳(メタデータ) (2023-12-13T18:22:38Z) - Masked Pre-Training of Transformers for Histology Image Analysis [4.710921988115685]
デジタル病理学では、がん診断や予後予測などの応用に全スライド画像(WSI)が広く用いられている。
パッチ間の空間的関係を保ちながら、WSIの広い領域を符号化するための有望な方法として、ビジュアルトランスフォーマーモデルが登場した。
本稿では,この問題を解決するためにラベル付きデータを使わずにトランスフォーマーモデルをトレーニングするためのプレテキストタスクを提案する。
我々のモデルであるMaskHITは、トランスフォーマー出力を用いて、マスクしたパッチを再構築し、それらの位置と視覚的特徴に基づいて代表的組織学的特徴を学習する。
論文 参考訳(メタデータ) (2023-04-14T23:56:49Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
本稿では,ピクセルレベルの情報を高レベルなセマンティクスに明示的にエンコードするための画素復元タスクを提案する。
また,画像理解を支援する強力なツールであるスケール情報の保存についても検討する。
提案されている統合SSLフレームワークは、さまざまなタスクで自己管理されたフレームワークを超越している。
論文 参考訳(メタデータ) (2023-01-02T17:47:27Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Multi-layer Clustering-based Residual Sparsifying Transform for Low-dose
CT Image Reconstruction [11.011268090482575]
本稿では,X線CT(Computerd Tomography)再構成のためのネットワーク構造スペーシング変換学習手法を提案する。
我々は, PWLS (Palalized weighted least squares) 再構成において, MCSTモデルを正規化器に配置することにより低用量CT再構成にMCSTモデルを適用した。
シミュレーションの結果,PWLS-MCSTは従来のFBP法やEP正則化を用いたPWLSよりも画像再構成精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-03-22T09:38:41Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
本稿では,Align Hierarchical Attention (AHA)とMulti-Grained Transformer (MGT)モジュールを含むAlign Transformerフレームワークを提案する。
パブリックなIU-XrayとMIMIC-CXRデータセットの実験は、AlignTransformerが2つのデータセットの最先端メソッドと競合する結果が得られることを示している。
論文 参考訳(メタデータ) (2022-03-18T13:43:53Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。