Towards Universal Unsupervised Anomaly Detection in Medical Imaging
- URL: http://arxiv.org/abs/2401.10637v1
- Date: Fri, 19 Jan 2024 11:35:07 GMT
- Title: Towards Universal Unsupervised Anomaly Detection in Medical Imaging
- Authors: Cosmin I. Bercea and Benedikt Wiestler and Daniel Rueckert and Julia
A. Schnabel
- Abstract summary: We present a novel unsupervised anomaly detection approach, termed textitReversed Auto-Encoders (RA), designed to create realistic pseudo-healthy reconstructions.
We evaluate the proposed method across various imaging modalities, including magnetic resonance imaging (MRI) of the brain, pediatric wrist X-ray, and chest X-ray.
Our unsupervised anomaly detection approach may enhance diagnostic accuracy in medical imaging by identifying a broader range of unknown pathologies.
- Score: 13.161402789616004
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing complexity of medical imaging data underscores the need for
advanced anomaly detection methods to automatically identify diverse
pathologies. Current methods face challenges in capturing the broad spectrum of
anomalies, often limiting their use to specific lesion types in brain scans. To
address this challenge, we introduce a novel unsupervised approach, termed
\textit{Reversed Auto-Encoders (RA)}, designed to create realistic
pseudo-healthy reconstructions that enable the detection of a wider range of
pathologies. We evaluate the proposed method across various imaging modalities,
including magnetic resonance imaging (MRI) of the brain, pediatric wrist X-ray,
and chest X-ray, and demonstrate superior performance in detecting anomalies
compared to existing state-of-the-art methods. Our unsupervised anomaly
detection approach may enhance diagnostic accuracy in medical imaging by
identifying a broader range of unknown pathologies. Our code is publicly
available at: \url{https://github.com/ci-ber/RA}.
Related papers
- Pancreatic Tumor Segmentation as Anomaly Detection in CT Images Using Denoising Diffusion Models [4.931603088067152]
This study presents a novel approach to pancreatic tumor detection, employing weak supervision anomaly detection through denoising diffusion algorithms.
The method enables seamless translation of images between diseased and healthy subjects, resulting in detailed anomaly maps without requiring complex training protocols and segmentation masks.
Recognizing the low survival rates of pancreatic cancer, this study emphasizes the need for continued research to leverage diffusion models' efficiency in medical segmentation tasks.
arXiv Detail & Related papers (2024-06-04T16:38:11Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - MAEDiff: Masked Autoencoder-enhanced Diffusion Models for Unsupervised
Anomaly Detection in Brain Images [40.89943932086941]
We propose a novel Masked Autoencoder-enhanced Diffusion Model (MAEDiff) for unsupervised anomaly detection in brain images.
The MAEDiff involves a hierarchical patch partition. It generates healthy images by overlapping upper-level patches and implements a mechanism based on the masked autoencoders operating on the sub-level patches to enhance the condition on the unnoised regions.
arXiv Detail & Related papers (2024-01-19T08:54:54Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Diffusion Models for Medical Anomaly Detection [0.8999666725996974]
We present a novel weakly supervised anomaly detection method based on denoising diffusion implicit models.
Our method generates very detailed anomaly maps without the need for a complex training procedure.
arXiv Detail & Related papers (2022-03-08T12:35:07Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.