Diffusion Models for Medical Anomaly Detection
- URL: http://arxiv.org/abs/2203.04306v1
- Date: Tue, 8 Mar 2022 12:35:07 GMT
- Title: Diffusion Models for Medical Anomaly Detection
- Authors: Julia Wolleb, Florentin Bieder, Robin Sandk\"uhler, Philippe C. Cattin
- Abstract summary: We present a novel weakly supervised anomaly detection method based on denoising diffusion implicit models.
Our method generates very detailed anomaly maps without the need for a complex training procedure.
- Score: 0.8999666725996974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical applications, weakly supervised anomaly detection methods are of
great interest, as only image-level annotations are required for training.
Current anomaly detection methods mainly rely on generative adversarial
networks or autoencoder models. Those models are often complicated to train or
have difficulties to preserve fine details in the image. We present a novel
weakly supervised anomaly detection method based on denoising diffusion
implicit models. We combine the deterministic iterative noising and denoising
scheme with classifier guidance for image-to-image translation between diseased
and healthy subjects. Our method generates very detailed anomaly maps without
the need for a complex training procedure. We evaluate our method on the
BRATS2020 dataset for brain tumor detection and the CheXpert dataset for
detecting pleural effusions.
Related papers
- Pancreatic Tumor Segmentation as Anomaly Detection in CT Images Using Denoising Diffusion Models [4.931603088067152]
This study presents a novel approach to pancreatic tumor detection, employing weak supervision anomaly detection through denoising diffusion algorithms.
The method enables seamless translation of images between diseased and healthy subjects, resulting in detailed anomaly maps without requiring complex training protocols and segmentation masks.
Recognizing the low survival rates of pancreatic cancer, this study emphasizes the need for continued research to leverage diffusion models' efficiency in medical segmentation tasks.
arXiv Detail & Related papers (2024-06-04T16:38:11Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
We propose a hybrid model - Transformation-based Embedding learning for Novelty Detection (TEND)
With a pre-trained autoencoder as image feature extractor, TEND learns to discriminate the feature embeddings of in-distribution data from the transformed counterparts as fake out-of-distribution inputs.
arXiv Detail & Related papers (2021-07-31T00:10:26Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.