Real-Time Zero-Day Intrusion Detection System for Automotive Controller
Area Network on FPGAs
- URL: http://arxiv.org/abs/2401.10724v1
- Date: Fri, 19 Jan 2024 14:36:01 GMT
- Title: Real-Time Zero-Day Intrusion Detection System for Automotive Controller
Area Network on FPGAs
- Authors: Shashwat Khandelwal, Shreejith Shanker
- Abstract summary: This paper presents an unsupervised-learning-based convolutional autoencoder architecture for detecting zero-day attacks.
We quantise the model using Vitis-AI tools from AMD/Xilinx targeting a resource-constrained Zynq Ultrascale platform.
The proposed model successfully achieves equal or higher classification accuracy (> 99.5%) on unseen DoS, fuzzing, and spoofing attacks.
- Score: 13.581341206178525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Increasing automation in vehicles enabled by increased connectivity to the
outside world has exposed vulnerabilities in previously siloed automotive
networks like controller area networks (CAN). Attributes of CAN such as
broadcast-based communication among electronic control units (ECUs) that
lowered deployment costs are now being exploited to carry out active injection
attacks like denial of service (DoS), fuzzing, and spoofing attacks. Research
literature has proposed multiple supervised machine learning models deployed as
Intrusion detection systems (IDSs) to detect such malicious activity; however,
these are largely limited to identifying previously known attack vectors. With
the ever-increasing complexity of active injection attacks, detecting zero-day
(novel) attacks in these networks in real-time (to prevent propagation) becomes
a problem of particular interest. This paper presents an
unsupervised-learning-based convolutional autoencoder architecture for
detecting zero-day attacks, which is trained only on benign (attack-free) CAN
messages. We quantise the model using Vitis-AI tools from AMD/Xilinx targeting
a resource-constrained Zynq Ultrascale platform as our IDS-ECU system for
integration. The proposed model successfully achieves equal or higher
classification accuracy (> 99.5%) on unseen DoS, fuzzing, and spoofing attacks
from a publicly available attack dataset when compared to the state-of-the-art
unsupervised learning-based IDSs. Additionally, by cleverly overlapping IDS
operation on a window of CAN messages with the reception, the model is able to
meet line-rate detection (0.43 ms per window) of high-speed CAN, which when
coupled with the low energy consumption per inference, makes this architecture
ideally suited for detecting zero-day attacks on critical CAN networks.
Related papers
- A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
In-vehicle intrusion detection systems (IDSs) must detect seen attacks and provide a robust defense against new, unseen attacks.
Previous work has relied solely on the CAN ID feature or has used traditional machine learning (ML) approaches with manual feature extraction.
This paper introduces a cutting-edge, novel, lightweight, in-vehicle, IDS-leveraging, deep learning (DL) algorithm to address these limitations.
arXiv Detail & Related papers (2024-08-15T21:51:56Z) - Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks [9.86830550255822]
Connected and Automated Vehicles (CAVs) on top of 5G and Beyond networks (5GB) make them vulnerable to increasing vectors of security and privacy attacks.
We propose in this paper a novel detection mechanism that leverages the ability of the deep auto-encoder method to detect attacks relying only on the benign network traffic pattern.
Using federated learning, the proposed intrusion detection system can be trained with large and diverse benign network traffic, while preserving the CAVs privacy, and minimizing the communication overhead.
arXiv Detail & Related papers (2024-07-03T12:42:31Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors.
In this paper, we present a case for custom-quantised literature (CQMLP) as a multi-class classification model.
We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages with a very high accuracy of 99.9%.
arXiv Detail & Related papers (2024-01-19T21:11:02Z) - A Lightweight Multi-Attack CAN Intrusion Detection System on Hybrid
FPGAs [13.581341206178525]
Intrusion detection and mitigation approaches have shown promising results in detecting multiple attack vectors in Controller Area Network (CAN)
We present a lightweight multi-attack quantised machine learning model that is deployed using Xilinx's Deep Learning Processing Unit IP on a Zynq Ultrascale+ (XCZU3EG) FPGA.
The model detects denial of service and fuzzing attacks with an accuracy of above 99 % and a false positive rate of 0.07%, which are comparable to the state-of-the-art techniques in the literature.
arXiv Detail & Related papers (2024-01-19T13:39:05Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - CANShield: Signal-based Intrusion Detection for Controller Area Networks [29.03951113836835]
We propose CANShield, a signal-based intrusion detection framework for the CAN bus.
CanShield consists of three modules: a data preprocessing module that handles the high-dimensional CAN data stream at the signal level; a data analyzer module consisting of multiple deep autoencoder networks, each analyzing the time-series data from a different temporal perspective; and an attack detection module that uses an ensemble method to make the final decision.
arXiv Detail & Related papers (2022-05-03T04:52:44Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
We show that adversarial attacks can break DL-based power allocation in the downlink of a massive multiple-input-multiple-output (maMIMO) network.
We benchmark the performance of these attacks and show that with a small perturbation in the input of the neural network (NN), the white-box attacks can result in infeasible solutions up to 86%.
arXiv Detail & Related papers (2021-01-28T16:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.