Applications of flow models to the generation of correlated lattice QCD ensembles
- URL: http://arxiv.org/abs/2401.10874v2
- Date: Tue, 28 May 2024 10:10:26 GMT
- Title: Applications of flow models to the generation of correlated lattice QCD ensembles
- Authors: Ryan Abbott, Aleksandar Botev, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López, Phiala E. Shanahan, Julian M. Urban,
- Abstract summary: Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters.
This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables.
- Score: 69.18453821764075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters. This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables. Three different proof-of-concept applications are demonstrated using a novel residual flow architecture: continuum limits of gauge theories, the mass dependence of QCD observables, and hadronic matrix elements based on the Feynman-Hellmann approach. In all three cases, it is shown that statistical uncertainties are significantly reduced when machine-learned flows are incorporated as compared with the same calculations performed with uncorrelated ensembles or direct reweighting.
Related papers
- Relaxation Fluctuations of Correlation Functions: Spin and Random Matrix Models [0.0]
We study the fluctuation average and variance of certain correlation functions as a diagnostic measure of quantum chaos.
We identify the three distinct phases of the models: the ergodic, the fractal, and the localized phases.
arXiv Detail & Related papers (2024-07-31T14:45:46Z) - Simple Fermionic backflow states via a systematically improvable tensor decomposition [0.0]
We present an effective ansatz for the wave function of correlated electrons that brings closer the fields of machine learning parameterizations and tensor rank decompositions.
We consider a CANDECOMP/PARAFAC (CP) tensor factorization of a general backflow transformation in second quantization for a simple, compact and systematically improvable Fermionic state.
arXiv Detail & Related papers (2024-07-16T14:37:20Z) - Stochastic modeling of superfluorescence in compact systems [0.0]
We propose an approach to describe superfluorescence in compact ensembles of multi-level emitters in the presence of various incoherent processes.
We present a series of numerical examples, comparing our solution to exact calculations and discussing the limits of applicability.
arXiv Detail & Related papers (2023-12-11T17:18:08Z) - Gauge-equivariant flow models for sampling in lattice field theories
with pseudofermions [51.52945471576731]
This work presents gauge-equivariant architectures for flow-based sampling in fermionic lattice field theories using pseudofermions as estimators for the fermionic determinant.
This is the default approach in state-of-the-art lattice field theory calculations, making this development critical to the practical application of flow models to theories such as QCD.
arXiv Detail & Related papers (2022-07-18T21:13:34Z) - On the Kullback-Leibler divergence between pairwise isotropic
Gaussian-Markov random fields [93.35534658875731]
We derive expressions for the Kullback-Leibler divergence between two pairwise isotropic Gaussian-Markov random fields.
The proposed equation allows the development of novel similarity measures in image processing and machine learning applications.
arXiv Detail & Related papers (2022-03-24T16:37:24Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
In lattice quantum field theory studies, parameters defining the lattice theory must be tuned toward criticality to access continuum physics.
We introduce an approach to "deform" Monte Carlo estimators based on contour deformations applied to the domain of the path integral.
We demonstrate that flow-based MCMC can mitigate critical slowing down and observifolds can exponentially reduce variance in proof-of-principle applications.
arXiv Detail & Related papers (2021-06-03T16:37:05Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Tensor lattice field theory with applications to the renormalization
group and quantum computing [0.0]
We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD.
We show that these lattice models can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums.
We derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers.
arXiv Detail & Related papers (2020-10-13T16:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.