Tensor lattice field theory with applications to the renormalization
group and quantum computing
- URL: http://arxiv.org/abs/2010.06539v2
- Date: Wed, 10 Nov 2021 21:19:59 GMT
- Title: Tensor lattice field theory with applications to the renormalization
group and quantum computing
- Authors: Yannick Meurice, Ryo Sakai, Judah Unmuth-Yockey
- Abstract summary: We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD.
We show that these lattice models can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums.
We derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss the successes and limitations of statistical sampling for a
sequence of models studied in the context of lattice QCD and emphasize the need
for new methods to deal with finite-density and real-time evolution. We show
that these lattice models can be reformulated using tensorial methods where the
field integrations in the path-integral formalism are replaced by discrete
sums. These formulations involve various types of duality and provide exact
coarse-graining formulas which can be combined with truncations to obtain
practical implementations of the Wilson renormalization group program. Tensor
reformulations are naturally discrete and provide manageable transfer matrices.
Combining truncations with the time continuum limit, we derive Hamiltonians
suitable to perform quantum simulation experiments, for instance using cold
atoms, or to be programmed on existing quantum computers. We review recent
progress concerning the tensor field theory treatment of non-compact scalar
models, supersymmetric models, economical four-dimensional algorithms,
noise-robust enforcement of Gauss's law, symmetry preserving truncations and
topological considerations. We discuss connections with other tensor network
approaches.
Related papers
- An efficient finite-resource formulation of non-Abelian lattice gauge theories beyond one dimension [0.0]
We propose a resource-efficient method to compute the running of the coupling in non-Abelian gauge theories beyond one spatial dimension.
Our method enables computations at arbitrary values of the bare coupling and lattice spacing with current quantum computers, simulators and tensor-network calculations.
arXiv Detail & Related papers (2024-09-06T17:59:24Z) - Entanglement and the density matrix renormalisation group in the generalised Landau paradigm [0.0]
We leverage the interplay between gapped phases and dualities of symmetric one-dimensional quantum lattice models.
For every phase in the phase diagram, the dual representation of the ground state that breaks all symmetries minimises both the entanglement entropy and the required number of variational parameters.
Our work testifies to the usefulness of generalised non-invertible symmetries and their formal category theoretic description for the nuts and bolts simulation of strongly correlated systems.
arXiv Detail & Related papers (2024-08-12T17:51:00Z) - Tensor Renormalization Group Methods for Quantum Real-time Evolution [0.0]
We show that tensor renormalization group methods can be applied to calculation of Trotterized evolution operators at real time.
We apply the numerical methods to the 1D Quantum Ising Model with an external transverse field in the ordered phase.
arXiv Detail & Related papers (2023-12-22T16:57:14Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Quantum lattice models that preserve continuous translation symmetry [0.0]
Bandlimited continuous quantum fields are isomorphic to lattice theories, yet without requiring a fixed lattice.
This is an isomorphism that avoids taking the limit of the lattice spacing going to zero.
One obtains conserved lattice observables for these continuous symmetries, as well as a duality of locality from the two perspectives.
arXiv Detail & Related papers (2023-03-14T06:32:15Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Lattice Renormalization of Quantum Simulations [8.771066413050963]
We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an anisotropic lattice.
Based on the tools of Euclidean lattice field theory, we propose two schemes to determine Minkowski lattice spacings.
arXiv Detail & Related papers (2021-07-02T16:10:45Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.