Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
- URL: http://arxiv.org/abs/2401.10891v2
- Date: Sun, 7 Apr 2024 06:52:21 GMT
- Title: Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
- Authors: Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao,
- Abstract summary: This work presents Depth Anything, a highly practical solution for robust monocular depth estimation.
We scale up the dataset by designing a data engine to collect and automatically annotate large-scale unlabeled data.
We evaluate its zero-shot capabilities extensively, including six public datasets and randomly captured photos.
- Score: 87.61900472933523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents Depth Anything, a highly practical solution for robust monocular depth estimation. Without pursuing novel technical modules, we aim to build a simple yet powerful foundation model dealing with any images under any circumstances. To this end, we scale up the dataset by designing a data engine to collect and automatically annotate large-scale unlabeled data (~62M), which significantly enlarges the data coverage and thus is able to reduce the generalization error. We investigate two simple yet effective strategies that make data scaling-up promising. First, a more challenging optimization target is created by leveraging data augmentation tools. It compels the model to actively seek extra visual knowledge and acquire robust representations. Second, an auxiliary supervision is developed to enforce the model to inherit rich semantic priors from pre-trained encoders. We evaluate its zero-shot capabilities extensively, including six public datasets and randomly captured photos. It demonstrates impressive generalization ability. Further, through fine-tuning it with metric depth information from NYUv2 and KITTI, new SOTAs are set. Our better depth model also results in a better depth-conditioned ControlNet. Our models are released at https://github.com/LiheYoung/Depth-Anything.
Related papers
- Depth Estimation From Monocular Images With Enhanced Encoder-Decoder Architecture [0.0]
This paper introduces a novel deep learning-based approach using an encoder-decoder architecture.
The Inception-ResNet-v2 model is utilized as the encoder.
Experimental results on the NYU Depth V2 dataset show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-10-15T13:46:19Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - Shadow Generation for Composite Image Using Diffusion model [16.316311264197324]
We resort to foundation model with rich prior knowledge of natural shadow images.
We first adapt ControlNet to our task and then propose intensity modulation modules to improve the shadow intensity.
Experimental results on both DESOBA and DESOBAv2 datasets as well as real composite images demonstrate the superior capability of our model for shadow generation task.
arXiv Detail & Related papers (2024-03-22T14:27:58Z) - Kick Back & Relax++: Scaling Beyond Ground-Truth Depth with SlowTV &
CribsTV [50.616892315086574]
This paper proposes two novel datasets: SlowTV and CribsTV.
These are large-scale datasets curated from publicly available YouTube videos, containing a total of 2M training frames.
We leverage these datasets to tackle the challenging task of zero-shot generalization.
arXiv Detail & Related papers (2024-03-03T17:29:03Z) - Towards Better Data Exploitation in Self-Supervised Monocular Depth
Estimation [14.262669370264994]
In this paper, we take two data augmentation techniques, namely Resizing-Cropping and Splitting-Permuting, to fully exploit the potential of training datasets.
Specifically, the original image and the generated two augmented images are fed into the training pipeline simultaneously and we leverage them to conduct self-distillation.
Experimental results demonstrate our method can achieve state-of-the-art performance on the KITTI benchmark, with both raw ground truth and improved ground truth.
arXiv Detail & Related papers (2023-09-11T06:18:05Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - Towards Accurate Reconstruction of 3D Scene Shape from A Single
Monocular Image [91.71077190961688]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then exploits 3D point cloud data to predict the depth shift and the camera's focal length that allow us to recover 3D scene shapes.
We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot evaluation.
arXiv Detail & Related papers (2022-08-28T16:20:14Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.