論文の概要: Location Sensitive Embedding for Knowledge Graph Reasoning
- arxiv url: http://arxiv.org/abs/2401.10893v3
- Date: Tue, 30 Jan 2024 03:14:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 11:45:30.225068
- Title: Location Sensitive Embedding for Knowledge Graph Reasoning
- Title(参考訳): 知識グラフ推論のための位置感性埋め込み
- Authors: Deepak Banerjee, Anjali Ishaan
- Abstract要約: 翻訳距離モデルの主な課題は、グラフ内の「頭部」と「尾」の実体を効果的に区別できないことである。
この問題に対処するため,新しい位置感応型埋め込み法 (LSE) を開発した。
LSEは、リレーショナルなマッピングを使用してヘッダーを革新的に修正し、リレーショナルトランスフォーメーションを単なる翻訳よりもリレーショナルトランスフォーメーションとして概念化する。
リンク予測のための4つの大規模KGデータセットで実施された実験では、LSEdは性能が優れているか、最先端の関連作品と競合している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embedding methods transform the knowledge graph into a continuous,
low-dimensional space, facilitating inference and completion tasks. Existing
methods are mainly divided into two types: translational distance models and
semantic matching models. A key challenge in translational distance models is
their inability to effectively differentiate between 'head' and 'tail' entities
in graphs. To address this problem, a novel location-sensitive embedding (LSE)
method has been developed. LSE innovatively modifies the head entity using
relation-specific mappings, conceptualizing relations as linear transformations
rather than mere translations. The theoretical foundations of LSE, including
its representational capabilities and its connections to existing models, have
been thoroughly examined. A more streamlined variant, LSE-d, which employs a
diagonal matrix for transformations to enhance practical efficiency, is also
proposed. Experiments conducted on four large-scale KG datasets for link
prediction show that LSEd either outperforms or is competitive with
state-of-the-art related works.
- Abstract(参考訳): 埋め込み手法は知識グラフを連続した低次元空間に変換し、推論と完了作業を容易にする。
既存の手法は主に翻訳距離モデルと意味マッチングモデルという2つのタイプに分けられる。
翻訳距離モデルにおける重要な課題は、グラフ内の「ヘッド」と「テール」エンティティを効果的に区別できないことである。
この問題に対処するため,新しい位置感応型埋め込み法 (LSE) を開発した。
LSEは、関係特化写像を用いてヘッダーを革新的に修正し、関係を単なる翻訳ではなく線形変換として概念化する。
lseの表現能力や既存モデルとの接続を含む理論的基礎は徹底的に検討されている。
より合理化された変種 LSE-d も提案され、実際の効率を高めるために変換に対角行列を用いた。
リンク予測のための4つの大規模kgデータセットで実施された実験は、lsedが最先端の関連作品よりも優れているか、あるいは競合していることを示している。
関連論文リスト
- Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - Improve Transformer Pre-Training with Decoupled Directional Relative
Position Encoding and Representation Differentiations [23.2969212998404]
トランスフォーマーに基づく事前学習言語モデルを再検討し、モデルの表現性を制限する可能性のある2つの問題を特定する。
既存の相対位置符号化モデルは、相対距離と方向という2つの異種情報を混同する。
事前学習型言語モデルを改善するための2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-09T12:35:04Z) - ProjB: An Improved Bilinear Biased ProjE model for Knowledge Graph
Completion [1.5576879053213302]
この研究は、計算の複雑さが低く、モデル改善の可能性が高いため、ProjE KGEを改善する。
FB15KやWN18のようなベンチマーク知識グラフ(KG)の実験結果から、提案手法はエンティティ予測タスクにおける最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-15T18:18:05Z) - TranS: Transition-based Knowledge Graph Embedding with Synthetic
Relation Representation [14.759663752868487]
本稿では,知識グラフ埋め込みのためのトランジションベースの新しい手法TranSを提案する。
従来のスコアリングパターンの単一関係ベクトルを合成関係表現に置き換えることで、これらの問題を効果的かつ効率的に解決することができる。
大規模知識グラフデータセット ogbl-wikikg2 の実験は、我々のモデルが最先端の結果を達成することを示す。
論文 参考訳(メタデータ) (2022-04-18T16:55:25Z) - STaR: Knowledge Graph Embedding by Scaling, Translation and Rotation [20.297699026433065]
ビリニア法は知識グラフ埋め込み(KGE)において主流であり、実体と関係性の低次元表現を学習することを目的としている。
以前の研究では、主に非可換性のような6つの重要なパターンが発見されている。
上述の2つの部分からなるバイリニアモデルスケーリング翻訳・回転(STaR)を提案する。
論文 参考訳(メタデータ) (2022-02-15T02:06:22Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Semantic Correspondence with Transformers [68.37049687360705]
本稿では,変換器を用いたコストアグリゲーション(CAT)を提案し,意味論的に類似した画像間の密接な対応を見出す。
初期相関マップと多レベルアグリゲーションを曖昧にするための外観親和性モデリングを含む。
提案手法の有効性を示す実験を行い,広範囲にわたるアブレーション研究を行った。
論文 参考訳(メタデータ) (2021-06-04T14:39:03Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
弱い教師付き学習は、セマンティックセグメンテーションにおける大きなラベル付きデータセットの必要性を軽減するための魅力的な代替手段として登場した。
本稿では,マルチモーダル画像シナリオにおける自己スーパービジョンを活用した新しい学習戦略を提案する。
私たちのアプローチは、同じ学習条件下で関連する最近の文学を上回ります。
論文 参考訳(メタデータ) (2021-04-06T13:14:20Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - RatE: Relation-Adaptive Translating Embedding for Knowledge Graph
Completion [51.64061146389754]
複素空間における新たな重み付き積の上に構築された関係適応変換関数を提案する。
次に、関係適応型翻訳埋め込み(RatE)アプローチを示し、各グラフを3倍にスコアする。
論文 参考訳(メタデータ) (2020-10-10T01:30:30Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。