Debiasing and a local analysis for population clustering using
semidefinite programming
- URL: http://arxiv.org/abs/2401.10927v1
- Date: Tue, 16 Jan 2024 03:14:24 GMT
- Title: Debiasing and a local analysis for population clustering using
semidefinite programming
- Authors: Shuheng Zhou
- Abstract summary: We consider the problem of partitioning a small data sample of size $n$ drawn from a mixture of $2$ sub-gaussian distributions.
This work is motivated by the application of clustering individuals according to their population of origin.
- Score: 1.9761774213809036
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we consider the problem of partitioning a small data sample of
size $n$ drawn from a mixture of $2$ sub-gaussian distributions. In particular,
we analyze computational efficient algorithms proposed by the same author, to
partition data into two groups approximately according to their population of
origin given a small sample. This work is motivated by the application of
clustering individuals according to their population of origin using $p$
markers, when the divergence between any two of the populations is small. We
build upon the semidefinite relaxation of an integer quadratic program that is
formulated essentially as finding the maximum cut on a graph, where edge
weights in the cut represent dissimilarity scores between two nodes based on
their $p$ features. Here we use $\Delta^2 :=p \gamma$ to denote the $\ell_2^2$
distance between two centers (mean vectors), namely, $\mu^{(1)}$, $\mu^{(2)}$
$\in$ $\mathbb{R}^p$. The goal is to allow a full range of tradeoffs between
$n, p, \gamma$ in the sense that partial recovery (success rate $< 100\%$) is
feasible once the signal to noise ratio $s^2 := \min\{np \gamma^2, \Delta^2\}$
is lower bounded by a constant. Importantly, we prove that the
misclassification error decays exponentially with respect to the SNR $s^2$.
This result was introduced earlier without a full proof. We therefore present
the full proof in the present work. Finally, for balanced partitions, we
consider a variant of the SDP1, and show that the new estimator has a superb
debiasing property. This is novel to the best of our knowledge.
Related papers
- Nearly Optimal Robust Covariance and Scatter Matrix Estimation Beyond Gaussians [2.311583680973075]
We study the problem of computationally efficient robust estimation of the covariance/scatter matrix of elliptical distributions.
We obtain the first efficiently computable, nearly optimal robust covariance estimators that extend beyond the Gaussian case.
arXiv Detail & Related papers (2025-02-10T15:31:57Z) - Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Robust Distribution Learning with Local and Global Adversarial Corruptions [17.22168727622332]
We develop an efficient finite-sample algorithm with error bounded by $sqrtvarepsilon k + rho + tildeO(dsqrtkn-1/(k lor 2))$ when $P$ has bounded covariance.
Our efficient procedure relies on a novel trace norm approximation of an ideal yet intractable 2-Wasserstein projection estimator.
arXiv Detail & Related papers (2024-06-10T17:48:36Z) - Multiple-policy Evaluation via Density Estimation [30.914344538340412]
We propose an algorithm named $mathrmCAESAR$ for this problem.
Up to low order and logarithmic terms $mathrmCAESAR$ achieves a sample complexity $tildeOleft(fracH4epsilon2sum_h=1Hmax_kin[K]sum_s,afrac(d_hpik(s,a))2mu*_h(s,a)right)$, where $dpi
arXiv Detail & Related papers (2024-03-29T23:55:25Z) - Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions [11.222970035173372]
kernel-based score estimator achieves an optimal mean square error of $widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)right)
We show that a kernel-based score estimator achieves an optimal mean square error of $widetildeOleft(n-1/2 t-fracd4right)$ upper bound for the total variation error of the distribution of the sample generated by the diffusion model under a mere sub-Gaussian
arXiv Detail & Related papers (2024-02-23T20:51:31Z) - Optimal score estimation via empirical Bayes smoothing [13.685846094715364]
We study the problem of estimating the score function of an unknown probability distribution $rho*$ from $n$ independent and identically distributed observations in $d$ dimensions.
We show that a regularized score estimator based on a Gaussian kernel attains this rate, shown optimal by a matching minimax lower bound.
arXiv Detail & Related papers (2024-02-12T16:17:40Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Sparse Gaussian Graphical Models with Discrete Optimization:
Computational and Statistical Perspectives [8.403841349300103]
We consider the problem of learning a sparse graph underlying an undirected Gaussian graphical model.
We propose GraphL0BnB, a new estimator based on an $ell_0$-penalized version of the pseudolikelihood function.
Our numerical experiments on real/synthetic datasets suggest that our method can solve, to near-optimality, problem instances with $p = 104$.
arXiv Detail & Related papers (2023-07-18T15:49:02Z) - Semidefinite programming on population clustering: a global analysis [0.6472434306724609]
We consider the problem of partitioning a small data sample of size $n$ drawn from a mixture of $2$ sub-gaussian distributions.
We are interested in the case that individual features are of low average quality $gamma$, and we want to use as few of them as possible to correctly partition the sample.
arXiv Detail & Related papers (2023-01-01T04:52:25Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
This work considers the sample complexity of obtaining an $varepsilon$-optimal policy in an average reward Markov Decision Process (AMDP)
We prove an upper bound of $widetilde O(H varepsilon-3 ln frac1delta)$ samples per state-action pair, where $H := sp(h*)$ is the span of bias of any optimal policy, $varepsilon$ is the accuracy and $delta$ is the failure probability.
arXiv Detail & Related papers (2022-12-01T15:57:58Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Overparametrized linear dimensionality reductions: From projection
pursuit to two-layer neural networks [10.368585938419619]
Given a cloud of $n$ data points in $mathbbRd$, consider all projections onto $m$-dimensional subspaces of $mathbbRd$.
What does this collection of probability distributions look like when $n,d$ grow large?
Denoting by $mathscrF_m, alpha$ the set of probability distributions in $mathbbRm$ that arise as low-dimensional projections in this limit, we establish new inner and outer bounds on $mathscrF_
arXiv Detail & Related papers (2022-06-14T00:07:33Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.