Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions
- URL: http://arxiv.org/abs/2402.15602v2
- Date: Tue, 23 Jul 2024 15:00:52 GMT
- Title: Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions
- Authors: Kaihong Zhang, Caitlyn H. Yin, Feng Liang, Jingbo Liu,
- Abstract summary: kernel-based score estimator achieves an optimal mean square error of $widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)right)
We show that a kernel-based score estimator achieves an optimal mean square error of $widetildeOleft(n-1/2 t-fracd4right)$ upper bound for the total variation error of the distribution of the sample generated by the diffusion model under a mere sub-Gaussian
- Score: 11.222970035173372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the asymptotic error of score-based diffusion model sampling in large-sample scenarios from a non-parametric statistics perspective. We show that a kernel-based score estimator achieves an optimal mean square error of $\widetilde{O}\left(n^{-1} t^{-\frac{d+2}{2}}(t^{\frac{d}{2}} \vee 1)\right)$ for the score function of $p_0*\mathcal{N}(0,t\boldsymbol{I}_d)$, where $n$ and $d$ represent the sample size and the dimension, $t$ is bounded above and below by polynomials of $n$, and $p_0$ is an arbitrary sub-Gaussian distribution. As a consequence, this yields an $\widetilde{O}\left(n^{-1/2} t^{-\frac{d}{4}}\right)$ upper bound for the total variation error of the distribution of the sample generated by the diffusion model under a mere sub-Gaussian assumption. If in addition, $p_0$ belongs to the nonparametric family of the $\beta$-Sobolev space with $\beta\le 2$, by adopting an early stopping strategy, we obtain that the diffusion model is nearly (up to log factors) minimax optimal. This removes the crucial lower bound assumption on $p_0$ in previous proofs of the minimax optimality of the diffusion model for nonparametric families.
Related papers
- Variable Selection in Convex Piecewise Linear Regression [5.366354612549172]
This paper presents Sparse Gradient as a solution for variable selection in convex piecewise linear regression.
A non-asymptotic local convergence analysis is provided for SpGD under subGaussian noise.
arXiv Detail & Related papers (2024-11-04T16:19:09Z) - Optimal score estimation via empirical Bayes smoothing [13.685846094715364]
We study the problem of estimating the score function of an unknown probability distribution $rho*$ from $n$ independent and identically distributed observations in $d$ dimensions.
We show that a regularized score estimator based on a Gaussian kernel attains this rate, shown optimal by a matching minimax lower bound.
arXiv Detail & Related papers (2024-02-12T16:17:40Z) - Debiasing and a local analysis for population clustering using
semidefinite programming [1.9761774213809036]
We consider the problem of partitioning a small data sample of size $n$ drawn from a mixture of $2$ sub-gaussian distributions.
This work is motivated by the application of clustering individuals according to their population of origin.
arXiv Detail & Related papers (2024-01-16T03:14:24Z) - $L^1$ Estimation: On the Optimality of Linear Estimators [64.76492306585168]
This work shows that the only prior distribution on $X$ that induces linearity in the conditional median is Gaussian.
In particular, it is demonstrated that if the conditional distribution $P_X|Y=y$ is symmetric for all $y$, then $X$ must follow a Gaussian distribution.
arXiv Detail & Related papers (2023-09-17T01:45:13Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
We provide the first convergence bounds which are linear in the data dimension.
We show that diffusion models require at most $tilde O(fracd log2(1/delta)varepsilon2)$ steps to approximate an arbitrary distribution.
arXiv Detail & Related papers (2023-08-07T16:01:14Z) - Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs
with a Generative Model [3.749193647980305]
This paper considers a Markov decision process (MDP) that admits a set of state-action features.
We show that a model-based approach (resp.$$Q-learning) provably learns an $varepsilon$-optimal policy with high probability.
arXiv Detail & Related papers (2021-05-28T17:49:39Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
We are given i.i.d. samples from a distribution of the form $Z = (1-epsilon) X + epsilon B$, where $X$ is a zero-mean and unknown covariance Gaussian $mathcalN(0, Sigma)$.
In the absence of contamination, prior work gave a simple tester for this hypothesis testing task that uses $O(d)$ samples.
We prove a sample complexity lower bound of $Omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma
arXiv Detail & Related papers (2020-12-31T18:24:41Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.