Even-if Explanations: Formal Foundations, Priorities and Complexity
- URL: http://arxiv.org/abs/2401.10938v2
- Date: Wed, 22 May 2024 11:17:10 GMT
- Title: Even-if Explanations: Formal Foundations, Priorities and Complexity
- Authors: Gianvincenzo Alfano, Sergio Greco, Domenico Mandaglio, Francesco Parisi, Reza Shahbazian, Irina Trubitsyna,
- Abstract summary: We show that both linear and tree-based models are strictly more interpretable than neural networks.
We introduce a preference-based framework that enables users to personalize explanations based on their preferences.
- Score: 18.126159829450028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: EXplainable AI has received significant attention in recent years. Machine learning models often operate as black boxes, lacking explainability and transparency while supporting decision-making processes. Local post-hoc explainability queries attempt to answer why individual inputs are classified in a certain way by a given model. While there has been important work on counterfactual explanations, less attention has been devoted to semifactual ones. In this paper, we focus on local post-hoc explainability queries within the semifactual `even-if' thinking and their computational complexity among different classes of models, and show that both linear and tree-based models are strictly more interpretable than neural networks. After this, we introduce a preference-based framework that enables users to personalize explanations based on their preferences, both in the case of semifactuals and counterfactuals, enhancing interpretability and user-centricity. Finally, we explore the complexity of several interpretability problems in the proposed preference-based framework and provide algorithms for polynomial cases.
Related papers
- Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Learning with Explanation Constraints [91.23736536228485]
We provide a learning theoretic framework to analyze how explanations can improve the learning of our models.
We demonstrate the benefits of our approach over a large array of synthetic and real-world experiments.
arXiv Detail & Related papers (2023-03-25T15:06:47Z) - Understanding Post-hoc Explainers: The Case of Anchors [6.681943980068051]
We present a theoretical analysis of a rule-based interpretability method that highlights a small set of words to explain a text's decision.
After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results.
arXiv Detail & Related papers (2023-03-15T17:56:34Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
We propose an LTCN-based model for interpretable pattern classification of structured data.
Our method brings its own mechanism for providing explanations by quantifying the relevance of each feature in the decision process.
Our interpretable model obtains competitive performance when compared to the state-of-the-art white and black boxes.
arXiv Detail & Related papers (2021-07-07T18:14:50Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
We present an approach that reasons about complex questions by decomposing them to simpler subquestions.
We derive the final answer according to instructions in a predefined reasoning template.
We show that our approach is competitive with the state-of-the-art while being interpretable and requires little supervision.
arXiv Detail & Related papers (2021-04-05T18:56:56Z) - TimeSHAP: Explaining Recurrent Models through Sequence Perturbations [3.1498833540989413]
Recurrent neural networks are a standard building block in numerous machine learning domains.
The complex decision-making in these models is seen as a black-box, creating a tension between accuracy and interpretability.
In this work, we contribute to filling these gaps by presenting TimeSHAP, a model-agnostic recurrent explainer.
arXiv Detail & Related papers (2020-11-30T19:48:57Z) - Discriminatory Expressions to Produce Interpretable Models in Short
Documents [0.0]
State-of-the-art models are black boxes that should not be used to solve problems that may have a social impact.
This paper presents a feature selection mechanism that is able to improve comprehensibility by using less but more meaningful features.
arXiv Detail & Related papers (2020-11-27T19:00:50Z) - Efficient computation of contrastive explanations [8.132423340684568]
We study the relation of contrastive and counterfactual explanations.
We propose a 2-phase algorithm for efficiently computing (plausible) positives of many standard machine learning models.
arXiv Detail & Related papers (2020-10-06T11:50:28Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
We show that feature-based explanations pose problems even for explaining trivial models.
We show that two popular classes of explainers, Shapley explainers and minimal sufficient subsets explainers, target fundamentally different types of ground-truth explanations.
arXiv Detail & Related papers (2020-09-23T09:45:23Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
We propose a framework for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models.
We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator.
arXiv Detail & Related papers (2020-09-01T23:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.