論文の概要: T2MAC: Targeted and Trusted Multi-Agent Communication through Selective
Engagement and Evidence-Driven Integration
- arxiv url: http://arxiv.org/abs/2401.10973v1
- Date: Fri, 19 Jan 2024 18:00:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 18:43:35.215041
- Title: T2MAC: Targeted and Trusted Multi-Agent Communication through Selective
Engagement and Evidence-Driven Integration
- Title(参考訳): T2MAC:選択エンゲージメントとエビデンス駆動統合によるマルチエージェント通信のターゲットと信頼性
- Authors: Chuxiong Sun and Zehua Zang and Jiabao Li and Jiangmeng Li and Xiao Xu
and Rui Wang and Changwen Zheng
- Abstract要約: 我々は、エージェントが選択的なエンゲージメントとエビデンス駆動の統合を学ぶのを助けるために、T2MAC(Targeted and Trusted Multi-Agent Communication)を提案する。
T2MACは、エージェントが個別化されたメッセージを作成し、理想的なコミュニケーションウィンドウをピンポイントし、信頼できるパートナーと対話することを可能にする。
本手法は,様々な課題を伴って,多様な協調型マルチエージェントタスクに対して評価を行う。
- 参考スコア(独自算出の注目度): 15.91335141803629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication stands as a potent mechanism to harmonize the behaviors of
multiple agents. However, existing works primarily concentrate on broadcast
communication, which not only lacks practicality, but also leads to information
redundancy. This surplus, one-fits-all information could adversely impact the
communication efficiency. Furthermore, existing works often resort to basic
mechanisms to integrate observed and received information, impairing the
learning process. To tackle these difficulties, we propose Targeted and Trusted
Multi-Agent Communication (T2MAC), a straightforward yet effective method that
enables agents to learn selective engagement and evidence-driven integration.
With T2MAC, agents have the capability to craft individualized messages,
pinpoint ideal communication windows, and engage with reliable partners,
thereby refining communication efficiency. Following the reception of messages,
the agents integrate information observed and received from different sources
at an evidence level. This process enables agents to collectively use evidence
garnered from multiple perspectives, fostering trusted and cooperative
behaviors. We evaluate our method on a diverse set of cooperative multi-agent
tasks, with varying difficulties, involving different scales and ranging from
Hallway, MPE to SMAC. The experiments indicate that the proposed model not only
surpasses the state-of-the-art methods in terms of cooperative performance and
communication efficiency, but also exhibits impressive generalization.
- Abstract(参考訳): コミュニケーションは、複数のエージェントの振る舞いを調和させる強力なメカニズムである。
しかし、既存の作品は主に放送通信に集中しており、実用性に欠けるだけでなく、情報の冗長性にも繋がる。
この過剰な全情報が通信効率に悪影響を及ぼす可能性がある。
さらに、既存の研究は、観測された情報と受信された情報を統合するための基本的なメカニズムに頼り、学習過程を損なうことも多い。
これらの課題に対処するために,エージェントが選択的エンゲージメントとエビデンス駆動の統合を学習するための,単純かつ効果的な手法であるT2MACを提案する。
T2MACでは、エージェントは個別化されたメッセージを作成し、理想的なコミュニケーションウィンドウをピンポイントし、信頼できるパートナーと関わり、通信効率を改善できる。
メッセージの受信後、エージェントは異なるソースから観測および受信された情報を証拠レベルで統合する。
このプロセスにより、エージェントは複数の視点から収集された証拠をまとめて利用し、信頼と協力の行動を促進することができる。
提案手法は,Halway, MPE, SMAC など様々なスケールで,様々な困難を伴う多様な協調型マルチエージェントタスクに対して評価する。
実験により,提案モデルは協調性能と通信効率の点で最先端の手法に勝るだけでなく,目覚ましい一般化を示した。
関連論文リスト
- Pragmatic Communication in Multi-Agent Collaborative Perception [80.14322755297788]
協調的な知覚は、知覚能力とコミュニケーションコストのトレードオフをもたらす。
PragCommは2つの重要なコンポーネントを持つマルチエージェント協調認識システムである。
PragCommは、32.7K以上の通信量で従来手法より一貫して優れていた。
論文 参考訳(メタデータ) (2024-01-23T11:58:08Z) - Context-aware Communication for Multi-agent Reinforcement Learning [6.109127175562235]
マルチエージェント強化学習(MARL)のための文脈認識型コミュニケーション手法を開発した。
第1段階では、エージェントは放送方式で粗い表現を交換し、第2段階のコンテキストを提供する。
その後、エージェントは第2段階の注意機構を利用し、受信機用にパーソナライズされたメッセージを選択的に生成する。
CACOMの有効性を評価するため,アクタ批判型と値に基づくMARLアルゴリズムを併用する。
論文 参考訳(メタデータ) (2023-12-25T03:33:08Z) - Enhancing Multi-Agent Coordination through Common Operating Picture
Integration [14.927199437011044]
各エージェントは、その観察、行動、メッセージの履歴を共通のオペレーティング・ピクチャー(COP)に組み込むことができる。
本研究は, COP統合の有効性を実証し, 従来のマルチエージェント強化学習(MARL)法と比較して, COPをベースとしたトレーニングが, アウト・オブ・ディストリビューション初期状態に直面した場合に, 堅牢なポリシーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-11-08T15:08:55Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Scalable Communication for Multi-Agent Reinforcement Learning via
Transformer-Based Email Mechanism [9.607941773452925]
コミュニケーションはマルチエージェント強化学習(MARL)における協調性を著しく向上させる
本稿では,部分的に観測されたタスクに対するMARL通信のスケーラビリティ問題に対処するための新しいフレームワークである Transformer-based Email Mechanism (TEM) を提案する。
論文 参考訳(メタデータ) (2023-01-05T05:34:30Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
MARL(Multi-Agent Reinforcement Learning)では、エージェントが直接通信できる特別なチャンネルがしばしば導入される。
本稿では,エージェントの集団的性能を向上させるために,エージェントが提供した信号の伝達と解釈を学習する,インテリジェントなファシリテータを通じてエージェントがコミュニケーションする手法を提案する。
論文 参考訳(メタデータ) (2022-05-21T14:11:33Z) - FCMNet: Full Communication Memory Net for Team-Level Cooperation in
Multi-Agent Systems [15.631744703803806]
我々は、エージェントが効果的なマルチホップ通信プロトコルを同時に学習できる強化学習ベースのアプローチであるFCMNetを紹介する。
単純なマルチホップトポロジを用いて、各エージェントに各ステップで他のエージェントが逐次エンコードした情報を受信する能力を与える。
FCMNetは、すべてのStarCraft IIマイクロマネジメントタスクにおいて、最先端のコミュニケーションベースの強化学習方法より優れている。
論文 参考訳(メタデータ) (2022-01-28T09:12:01Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
本稿では,コラボレーティブな多目的ナビゲーションタスクCoMONを紹介する。
この課題において、オラクルエージェントは、地図の形式で詳細な環境情報を有する。
視覚的に環境を知覚するナビゲーターエージェントと通信し、目標のシーケンスを見つけるのが任務である。
創発的コミュニケーションはエージェントの観察と3次元環境の空間構造に基礎を置くことができることを示す。
論文 参考訳(メタデータ) (2021-10-12T06:56:11Z) - Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent
Populations [59.608216900601384]
本研究では,3次元環境下で関節を作動させることでコミュニケーションを学ぶエージェントについて検討する。
現実的な仮定、意図の非一様分布、共通知識エネルギーコストにおいて、これらのエージェントは新規パートナーに一般化するプロトコルを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-10-29T19:23:10Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
我々はエージェントエージェントがエージェントエージェントコミュニケーションの事前学習を可能にするために、個別推論通信(I2C)を提案する。
先行知識は因果推論によって学習され、フィードフォワードニューラルネットワークによって実現される。
I2Cは通信オーバーヘッドを減らすだけでなく、様々なマルチエージェント協調シナリオのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-11T14:07:57Z) - On Emergent Communication in Competitive Multi-Agent Teams [116.95067289206919]
外部のエージェントチームによるパフォーマンスの競争が社会的影響として作用するかどうかを検討する。
以上の結果から,外部競争の影響により精度と一般化が向上し,コミュニケーション言語が急速に出現することが示唆された。
論文 参考訳(メタデータ) (2020-03-04T01:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。