Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations
- URL: http://arxiv.org/abs/2401.11225v1
- Date: Sat, 20 Jan 2024 12:59:08 GMT
- Title: Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations
- Authors: Mingge Cao, Haopeng Zhu, Minghui Min, Yulu Li, Shiyin Li, Hongliang Zhang, Zhu Han,
- Abstract summary: This paper proposes a personalized trajectory privacy protection mechanism (PTPPM)
We identify a protection location set (PLS) for each location by employing the Hilbert curve-based minimum distance search algorithm.
We put forth a novel Permute-and-Flip mechanism for location perturbation, which maps its initial application in data publishing privacy protection to a location perturbation mechanism.
- Score: 37.88484505367802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Location-based services (LBSs) in vehicular ad hoc networks (VANETs) offer users numerous conveniences. However, the extensive use of LBSs raises concerns about the privacy of users' trajectories, as adversaries can exploit temporal correlations between different locations to extract personal information. Additionally, users have varying privacy requirements depending on the time and location. To address these issues, this paper proposes a personalized trajectory privacy protection mechanism (PTPPM). This mechanism first uses the temporal correlation between trajectory locations to determine the possible location set for each time instant. We identify a protection location set (PLS) for each location by employing the Hilbert curve-based minimum distance search algorithm. This approach incorporates the complementary features of geo-indistinguishability and distortion privacy. We put forth a novel Permute-and-Flip mechanism for location perturbation, which maps its initial application in data publishing privacy protection to a location perturbation mechanism. This mechanism generates fake locations with smaller perturbation distances while improving the balance between privacy and quality of service (QoS). Simulation results show that our mechanism outperforms the benchmark by providing enhanced privacy protection while meeting user's QoS requirements.
Related papers
- Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
Collaborative inference among multiple wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications.
transmitting extracted features poses a significant privacy risk, as sensitive personal data can be exposed during the process.
We propose a novel privacy-preserving collaborative inference mechanism, wherein each edge device in the network secures the privacy of extracted features before transmitting them to a central server for inference.
arXiv Detail & Related papers (2024-10-25T18:11:02Z) - A Framework for Managing Multifaceted Privacy Leakage While Optimizing Utility in Continuous LBS Interactions [0.0]
We present several novel contributions aimed at advancing the understanding and management of privacy leakage in LBS.
Our contributions provides a more comprehensive framework for analyzing privacy concerns across different facets of location-based interactions.
arXiv Detail & Related papers (2024-04-20T15:20:01Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
Amplification by subsampling is one of the main primitives in machine learning with differential privacy.
We propose the first general framework for deriving mechanism-specific guarantees.
We analyze how subsampling affects the privacy of groups of multiple users.
arXiv Detail & Related papers (2024-03-07T19:36:05Z) - Measuring Privacy Loss in Distributed Spatio-Temporal Data [26.891854386652266]
We propose an alternative privacy loss against location reconstruction attacks by an informed adversary.
Our experiments on real and synthetic data demonstrate that our privacy loss better reflects our intuitions on individual privacy violation in the distributed setting.
arXiv Detail & Related papers (2024-02-18T09:53:14Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
Noise reduction mechanisms produce increasingly accurate answers.
Analysts only pay the privacy cost of the least noisy or most accurate answer released.
There has yet to be any study on how ex-post private mechanisms compose.
We develop privacy filters that allow an analyst to adaptively switch between differentially private and ex-post private mechanisms.
arXiv Detail & Related papers (2023-06-24T00:33:34Z) - Optimal and Differentially Private Data Acquisition: Central and Local
Mechanisms [9.599356978682108]
We consider a platform's problem of collecting data from privacy sensitive users to estimate an underlying parameter of interest.
We consider two popular differential privacy settings for providing privacy guarantees for the users: central and local.
We pose the mechanism design problem as the optimal selection of an estimator and payments that will elicit truthful reporting of users' privacy sensitivities.
arXiv Detail & Related papers (2022-01-10T00:27:43Z) - Location Trace Privacy Under Conditional Priors [22.970796265042246]
We propose a R'enyi divergence based privacy framework for bounding expected privacy loss for conditionally dependent data.
We demonstrate an algorithm for achieving this privacy under conditional priors.
arXiv Detail & Related papers (2021-02-23T21:55:34Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
We propose a new location privacy notion called PGLP, which provides a rich interface to release private locations with customizable and rigorous privacy guarantee.
Specifically, we formalize a user's location privacy requirements using a textitlocation policy graph, which is expressive and customizable.
Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy.
arXiv Detail & Related papers (2020-05-04T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.