PrivAR: Real-Time Privacy Protection for Location-Based Augmented Reality Applications
- URL: http://arxiv.org/abs/2508.02551v1
- Date: Mon, 04 Aug 2025 16:02:10 GMT
- Title: PrivAR: Real-Time Privacy Protection for Location-Based Augmented Reality Applications
- Authors: Shafizur Rahman Seeam, Ye Zheng, Zhengxiong Li, Yidan Hu,
- Abstract summary: Location-based augmented reality (LB-AR) applications, such as Pok'emon Go, stream sub-second GPS updates.<n>PrivAR is the first client-side privacy framework for real-time LB-AR.
- Score: 5.9049896608422285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Location-based augmented reality (LB-AR) applications, such as Pok\'emon Go, stream sub-second GPS updates to deliver responsive and immersive user experiences. However, this high-frequency location reporting introduces serious privacy risks. Protecting privacy in LB-AR is significantly more challenging than in traditional location-based services (LBS), as it demands real-time location protection with strong per-location and trajectory-level privacy guaranteed while maintaining low latency and high quality of service (QoS). Existing methods fail to meet these combined demands. To fill the gap, we present PrivAR, the first client-side privacy framework for real-time LB-AR. PrivAR introduces two lightweight mechanisms: (i) Planar Staircase Mechanism (PSM) which designs a staircase-shaped distribution to generate noisy location with strong per-location privacy and low expected error; and (ii) Thresholded Reporting with PSM (TR-PSM), a selective scheme that releases a noisy location update only when a displacement exceeds a private threshold, enabling many-to-one mappings for enhanced trace-level privacy while preserving high QoS. We present theoretical analysis, extensive experiments on two public datasets and our proprietary GeoTrace dataset, and validate PrivAR on a Pok\'emon-Go-style prototype. Results show PrivAR improves QoS (Gamescore) by up to 50%, while increasing attacker error by 1.8x over baseline with an additional 0.06 milliseconds runtime overhead.
Related papers
- PWC-MoE: Privacy-Aware Wireless Collaborative Mixture of Experts [59.5243730853157]
Large language models (LLMs) hosted on cloud servers alleviate the computational and storage burdens on local devices but raise privacy concerns.<n>Small language models (SLMs) running locally enhance privacy but suffer from limited performance on complex tasks.<n>We propose a privacy-aware wireless collaborative mixture of experts (PWC-MoE) framework to balance computational cost, performance, and privacy protection under bandwidth constraints.
arXiv Detail & Related papers (2025-05-13T16:27:07Z) - Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
Local Differential Privacy (LDP) offers strong privacy guarantees without requiring users to trust external parties.
We propose a Bayesian framework, Bayesian Coordinate Differential Privacy (BCDP), that enables feature-specific privacy quantification.
arXiv Detail & Related papers (2024-10-24T03:39:55Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.<n>We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.<n>State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
We investigate the privacy implications of SecAgg in federated learning.
We show that SecAgg offers weak privacy against membership inference attacks even in a single training round.
Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection.
arXiv Detail & Related papers (2024-03-26T15:07:58Z) - Measuring Privacy Loss in Distributed Spatio-Temporal Data [26.891854386652266]
We propose an alternative privacy loss against location reconstruction attacks by an informed adversary.
Our experiments on real and synthetic data demonstrate that our privacy loss better reflects our intuitions on individual privacy violation in the distributed setting.
arXiv Detail & Related papers (2024-02-18T09:53:14Z) - Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations [37.88484505367802]
This paper proposes a personalized trajectory privacy protection mechanism (PTPPM)
We identify a protection location set (PLS) for each location by employing the Hilbert curve-based minimum distance search algorithm.
We put forth a novel Permute-and-Flip mechanism for location perturbation, which maps its initial application in data publishing privacy protection to a location perturbation mechanism.
arXiv Detail & Related papers (2024-01-20T12:59:08Z) - Efficient Federated Prompt Tuning for Black-box Large Pre-trained Models [62.838689691468666]
We propose Federated Black-Box Prompt Tuning (Fed-BBPT) to optimally harness each local dataset.
Fed-BBPT capitalizes on a central server that aids local users in collaboratively training a prompt generator through regular aggregation.
Relative to extensive fine-tuning, Fed-BBPT proficiently sidesteps memory challenges tied to PTM storage and fine-tuning on local machines.
arXiv Detail & Related papers (2023-10-04T19:30:49Z) - H-LPS: a hybrid approach for user's location privacy in location-based services [0.0]
We have proposed a hybrid location privacy scheme (H-LPS) based on obfuscation and collaboration for protecting users' location privacy.<n>Our proposed scheme, H-LPS, provides a very high-level of privacy yet provides good accuracy for most of the users.
arXiv Detail & Related papers (2022-12-16T02:16:29Z) - Location Trace Privacy Under Conditional Priors [22.970796265042246]
We propose a R'enyi divergence based privacy framework for bounding expected privacy loss for conditionally dependent data.
We demonstrate an algorithm for achieving this privacy under conditional priors.
arXiv Detail & Related papers (2021-02-23T21:55:34Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
We propose a new location privacy notion called PGLP, which provides a rich interface to release private locations with customizable and rigorous privacy guarantee.
Specifically, we formalize a user's location privacy requirements using a textitlocation policy graph, which is expressive and customizable.
Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy.
arXiv Detail & Related papers (2020-05-04T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.