A comprehensive review of Quantum Machine Learning: from NISQ to Fault Tolerance
- URL: http://arxiv.org/abs/2401.11351v2
- Date: Sun, 31 Mar 2024 00:32:13 GMT
- Title: A comprehensive review of Quantum Machine Learning: from NISQ to Fault Tolerance
- Authors: Yunfei Wang, Junyu Liu,
- Abstract summary: We offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning.
Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.
- Score: 8.050429258747256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.
Related papers
- Quantum Machine Learning Algorithms for Anomaly Detection: a Survey [1.747623282473278]
We summarize the key concepts involved in quantum computing, introducing the formal concept of quantum speed up.
The survey provides a structured map of anomaly detection based on quantum machine learning.
arXiv Detail & Related papers (2024-08-20T17:55:25Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Synergy of machine learning with quantum computing and communication [0.0]
Machine learning in quantum computing and communication provides opportunities for revolutionizing the field of Physics, Mathematics, and Computer Science.
This paper gives a comprehensive review of state-of-the-art approaches in quantum computing and quantum communication in the context of Artificial Intelligence and machine learning models.
arXiv Detail & Related papers (2023-10-05T10:18:39Z) - Variational quantum algorithms for machine learning: theory and
applications [0.0]
This thesis provides a comprehensive review of the state-of-the-art in the field of Variational Quantum Algorithms and Quantum Machine Learning.
The discussion then shifts to quantum machine learning, where an introduction to the elements of machine learning and statistical learning theory is followed by a review of the most common quantum counterparts of machine learning models.
arXiv Detail & Related papers (2023-06-16T17:28:35Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
We define a formal framework for the verification and analysis of quantum machine learning algorithms against noises.
A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data.
Our approach is implemented on Google's Quantum classifier and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises.
arXiv Detail & Related papers (2020-08-17T11:56:23Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.