Synergy of machine learning with quantum computing and communication
- URL: http://arxiv.org/abs/2310.03434v1
- Date: Thu, 5 Oct 2023 10:18:39 GMT
- Title: Synergy of machine learning with quantum computing and communication
- Authors: Debasmita Bhoumik, Susmita Sur-Kolay, Latesh Kumar K. J., Sundaraja
Sitharama Iyengar
- Abstract summary: Machine learning in quantum computing and communication provides opportunities for revolutionizing the field of Physics, Mathematics, and Computer Science.
This paper gives a comprehensive review of state-of-the-art approaches in quantum computing and quantum communication in the context of Artificial Intelligence and machine learning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning in quantum computing and communication provides intensive
opportunities for revolutionizing the field of Physics, Mathematics, and
Computer Science. There exists an aperture of understanding behind this
interdisciplinary domain and a lack of core understanding renders an
opportunity to explore the machine learning techniques for this domain. This
paper gives a comprehensive review of state-of-the-art approaches in quantum
computing and quantum communication in the context of Artificial Intelligence
and machine learning models. The paper reviews the classical ML models that
have been employed in various ways for quantum computation such as quantum
error correction, quantum communication, quantum cryptography, and mapping
quantum algorithms to the existing hardware. The paper also illustrates how the
relevant current challenges can be transformed into future research avenues.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - A comprehensive review of Quantum Machine Learning: from NISQ to Fault Tolerance [8.050429258747256]
We offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning.
Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.
arXiv Detail & Related papers (2024-01-21T00:19:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Tensor networks for quantum machine learning [0.0]
We discuss how layouts like MPS, PEPS, TTNs and MERA can be mapped to a quantum computer.
We also discuss how they can be used for machine learning and data encoding and which implementation techniques improve their performance.
arXiv Detail & Related papers (2023-03-21T10:46:56Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies.
In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
arXiv Detail & Related papers (2020-04-25T07:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.