Distributionally Robust Policy Evaluation under General Covariate Shift in Contextual Bandits
- URL: http://arxiv.org/abs/2401.11353v2
- Date: Fri, 9 Aug 2024 07:14:53 GMT
- Title: Distributionally Robust Policy Evaluation under General Covariate Shift in Contextual Bandits
- Authors: Yihong Guo, Hao Liu, Yisong Yue, Anqi Liu,
- Abstract summary: We introduce a distributionally robust approach that enhances the reliability of offline policy evaluation in contextual bandits.
Our method aims to deliver robust policy evaluation results in the presence of discrepancies in both context and policy distribution.
- Score: 31.571978291138866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a distributionally robust approach that enhances the reliability of offline policy evaluation in contextual bandits under general covariate shifts. Our method aims to deliver robust policy evaluation results in the presence of discrepancies in both context and policy distribution between logging and target data. Central to our methodology is the application of robust regression, a distributionally robust technique tailored here to improve the estimation of conditional reward distribution from logging data. Utilizing the reward model obtained from robust regression, we develop a comprehensive suite of policy value estimators, by integrating our reward model into established evaluation frameworks, namely direct methods and doubly robust methods. Through theoretical analysis, we further establish that the proposed policy value estimators offer a finite sample upper bound for the bias, providing a clear advantage over traditional methods, especially when the shift is large. Finally, we designed an extensive range of policy evaluation scenarios, covering diverse magnitudes of shifts and a spectrum of logging and target policies. Our empirical results indicate that our approach significantly outperforms baseline methods, most notably in 90% of the cases under the policy shift-only settings and 72% of the scenarios under the general covariate shift settings.
Related papers
- Off-Policy Evaluation for Large Action Spaces via Policy Convolution [60.6953713877886]
Policy Convolution family of estimators uses latent structure within actions to strategically convolve the logging and target policies.
Experiments on synthetic and benchmark datasets demonstrate remarkable mean squared error (MSE) improvements when using PC.
arXiv Detail & Related papers (2023-10-24T01:00:01Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - ReVar: Strengthening Policy Evaluation via Reduced Variance Sampling [10.925914554822343]
We develop theory for optimal data collection within the class of tree-structured MDPs.
We empirically validate that ReVar leads to policy evaluation with mean squared error comparable to the oracle strategy.
arXiv Detail & Related papers (2022-03-09T03:41:15Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Offline Policy Selection under Uncertainty [113.57441913299868]
We consider offline policy selection as learning preferences over a set of policy prospects given a fixed experience dataset.
Access to the full distribution over one's belief of the policy value enables more flexible selection algorithms under a wider range of downstream evaluation metrics.
We show how BayesDICE may be used to rank policies with respect to any arbitrary downstream policy selection metric.
arXiv Detail & Related papers (2020-12-12T23:09:21Z) - Robust Batch Policy Learning in Markov Decision Processes [0.0]
We study the offline data-driven sequential decision making problem in the framework of Markov decision process (MDP)
We propose to evaluate each policy by a set of the average rewards with respect to distributions centered at the policy induced stationary distribution.
arXiv Detail & Related papers (2020-11-09T04:41:21Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.