Optimal Policy Adaptation under Covariate Shift
- URL: http://arxiv.org/abs/2501.08067v1
- Date: Tue, 14 Jan 2025 12:33:02 GMT
- Title: Optimal Policy Adaptation under Covariate Shift
- Authors: Xueqing Liu, Qinwei Yang, Zhaoqing Tian, Ruocheng Guo, Peng Wu,
- Abstract summary: We propose principled approaches for learning the optimal policy in the target domain by leveraging two datasets.
We derive the identifiability assumptions for the reward induced by a given policy.
We then learn the optimal policy by optimizing the estimated reward.
- Score: 15.703626346971182
- License:
- Abstract: Transfer learning of prediction models has been extensively studied, while the corresponding policy learning approaches are rarely discussed. In this paper, we propose principled approaches for learning the optimal policy in the target domain by leveraging two datasets: one with full information from the source domain and the other from the target domain with only covariates. First, under the setting of covariate shift, we formulate the problem from a perspective of causality and present the identifiability assumptions for the reward induced by a given policy. Then, we derive the efficient influence function and the semiparametric efficiency bound for the reward. Based on this, we construct a doubly robust and semiparametric efficient estimator for the reward and then learn the optimal policy by optimizing the estimated reward. Moreover, we theoretically analyze the bias and the generalization error bound for the learned policy. Furthermore, in the presence of both covariate and concept shifts, we propose a novel sensitivity analysis method to evaluate the robustness of the proposed policy learning approach. Extensive experiments demonstrate that the approach not only estimates the reward more accurately but also yields a policy that closely approximates the theoretically optimal policy.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Analyzing and Bridging the Gap between Maximizing Total Reward and Discounted Reward in Deep Reinforcement Learning [17.245293915129942]
In deep reinforcement learning applications, maximizing discounted reward is often employed instead of maximizing total reward.
We analyzed the suboptimality of the policy obtained through maximizing discounted reward in relation to the policy that maximizes total reward.
We developed methods to align the optimal policies of the two objectives in certain situations, which can improve the performance of reinforcement learning algorithms.
arXiv Detail & Related papers (2024-07-18T08:33:10Z) - Distributionally Robust Policy Evaluation under General Covariate Shift in Contextual Bandits [31.571978291138866]
We introduce a distributionally robust approach that enhances the reliability of offline policy evaluation in contextual bandits.
Our method aims to deliver robust policy evaluation results in the presence of discrepancies in both context and policy distribution.
arXiv Detail & Related papers (2024-01-21T00:42:06Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - Provable Offline Preference-Based Reinforcement Learning [95.00042541409901]
We investigate the problem of offline Preference-based Reinforcement Learning (PbRL) with human feedback.
We consider the general reward setting where the reward can be defined over the whole trajectory.
We introduce a new single-policy concentrability coefficient, which can be upper bounded by the per-trajectory concentrability.
arXiv Detail & Related papers (2023-05-24T07:11:26Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.
Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.
We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z) - Efficient Policy Learning from Surrogate-Loss Classification Reductions [65.91730154730905]
We consider the estimation problem given by a weighted surrogate-loss classification reduction of policy learning.
We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters.
We propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters.
arXiv Detail & Related papers (2020-02-12T18:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.