論文の概要: In-context Learning with Retrieved Demonstrations for Language Models: A
Survey
- arxiv url: http://arxiv.org/abs/2401.11624v4
- Date: Tue, 12 Mar 2024 04:38:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 00:55:00.165307
- Title: In-context Learning with Retrieved Demonstrations for Language Models: A
Survey
- Title(参考訳): 言語モデルを用いたインコンテクスト学習 : 調査
- Authors: Man Luo, Xin Xu, Yue Liu, Panupong Pasupat, Mehran Kazemi
- Abstract要約: インコンテクスト学習者(ICL)は入力コンテキストでのデモを少しだけ行うだけで、新しいタスクに適応できる。
最近の開発では、固定された一連のデモを使う代わりに、各入力クエリに合わせたデモを検索する。
本稿では,検索モデル,検索訓練手順,推論アルゴリズムの異なる設計選択について論じ,比較する。
- 参考スコア(独自算出の注目度): 24.935854940534277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models, especially pre-trained large language models, have showcased
remarkable abilities as few-shot in-context learners (ICL), adept at adapting
to new tasks with just a few demonstrations in the input context. However, the
model's ability to perform ICL is sensitive to the choice of the few-shot
demonstrations. Instead of using a fixed set of demonstrations, one recent
development is to retrieve demonstrations tailored to each input query. The
implementation of demonstration retrieval is relatively straightforward,
leveraging existing databases and retrieval systems. This not only improves the
efficiency and scalability of the learning process but also has been shown to
reduce biases inherent in manual example selection. In light of the encouraging
results and growing research in ICL with retrieved demonstrations, we conduct
an extensive review of studies in this area. In this survey, we discuss and
compare different design choices for retrieval models, retrieval training
procedures, and inference algorithms.
- Abstract(参考訳): 言語モデル、特に訓練済みの大規模言語モデルでは、入力コンテキストでいくつかのデモを行うだけで、新しいタスクに適応できる少数のインコンテキスト学習者(ICL)として顕著な能力を示した。
しかし、モデルがiclを実行する能力は、少数のデモの選択に敏感である。
最近の開発では、固定された一連のデモを使う代わりに、各入力クエリに合わせたデモを検索する。
実演検索の実装は比較的簡単で,既存のデータベースや検索システムを活用している。
これは学習プロセスの効率性とスケーラビリティを向上するだけでなく、手作業によるサンプル選択に固有のバイアスを低減することも示されている。
iclにおける研究成果の奨励と研究の進展を踏まえ,本研究の広範なレビューを行った。
本研究では,検索モデル,検索訓練手順,推論アルゴリズムの異なる設計選択について検討し,比較する。
関連論文リスト
- DemoShapley: Valuation of Demonstrations for In-Context Learning [20.26604061802236]
インコンテキスト学習(ICL)を利用した大規模言語モデル(LLM)は、タスク固有の微調整を必要とせずに、様々なタスク間で数ショットの学習を行う新しいベンチマークを設定した。
我々は、Data Shapleyの評価定理にインスパイアされたDemoShapleyを紹介する。
この結果から,DemoShapleyは精度と公平性の観点からモデル性能を向上するだけでなく,コンテキスト内デモとは異なる領域からのクエリを一般化することがわかった。
論文 参考訳(メタデータ) (2024-10-10T01:35:03Z) - Large Language Models Know What Makes Exemplary Contexts [42.90814615222177]
In-context Learning (ICL) は、Large Language Model (LLM) の発展において重要な機能であることが証明されている。
本稿では,LLMのための統合フレームワークを提案する。このフレームワークにより,影響力のあるインコンテキストのサンプルを自己選択してコンテキストを構成することができる。
論文 参考訳(メタデータ) (2024-08-14T12:32:41Z) - DemoRank: Selecting Effective Demonstrations for Large Language Models in Ranking Task [24.780407347867943]
本稿では,文節ランキングタスクにおいて,コンテキスト内デモを適切に選択する方法について検討する。
ランキングタスクのためのデモ選択フレームワークであるDemoRankを提案する。
論文 参考訳(メタデータ) (2024-06-24T06:10:13Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - Improving Input-label Mapping with Demonstration Replay for In-context
Learning [67.57288926736923]
In-context Learning (ICL)は、大規模な自己回帰言語モデルの出現する能力である。
Sliding Causal Attention (RdSca) と呼ばれる新しいICL法を提案する。
ICL実験において,本手法は入力ラベルマッピングを大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-10-30T14:29:41Z) - Dynamic Demonstrations Controller for In-Context Learning [51.3439660534631]
In-Context Learning(ICL)は、自然言語処理(NLP)のための新しいパラダイムであり、大規模な言語モデルが少数の実演とテストインスタンスを入力として観察する。
これまでの研究では、ICLはデモの選択と順序に敏感であることが判明している。
デモ数を調整することでICLの性能を向上させる動的デモ制御器(D$2$Controller)を提案する。
論文 参考訳(メタデータ) (2023-09-30T14:04:22Z) - In-Context Demonstration Selection with Cross Entropy Difference [95.21947716378641]
大規模言語モデル(LLM)は、ゼロショットタスクのパフォーマンスを改善するためにコンテキスト内デモを使用することができる。
テキスト内デモを選択するためのクロスエントロピー差分法(CED)を提案する。
論文 参考訳(メタデータ) (2023-05-24T05:04:00Z) - Dr.ICL: Demonstration-Retrieved In-context Learning [29.142262267850704]
インコンテキスト学習(ICL)は、LLMを使用するための強力なパラダイムとして、数発のデモでタスクを実行するために大きな言語モデルを教える。
最近の研究では、利用可能なデモのプールからの入力に対して意味論的に類似したデモを取得することで、より良いパフォーマンスが得られることが示唆されている。
この研究は、BM25のような単純な単語オーバーラップ類似度対策でさえ、ランダムに選択された実演よりも優れていることを示すことで、検索ベースのICLアプローチの適用性を拡大する。
論文 参考訳(メタデータ) (2023-05-23T14:55:25Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR)は、幅広いタスクのデモを検索する単一のモデルである。
我々は,高品質な候補を見つけるための反復的なマイニング戦略を備えたマルチタスクリストワイド・トレーニング・フレームワークを提案する。
13のタスクファミリーと複数のデータドメインにわたる30以上のタスクの実験は、UDRがベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-07T16:07:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。