LW-FedSSL: Resource-efficient Layer-wise Federated Self-supervised Learning
- URL: http://arxiv.org/abs/2401.11647v3
- Date: Mon, 21 Oct 2024 02:11:09 GMT
- Title: LW-FedSSL: Resource-efficient Layer-wise Federated Self-supervised Learning
- Authors: Ye Lin Tun, Chu Myaet Thwal, Le Quang Huy, Minh N. H. Nguyen, Choong Seon Hong,
- Abstract summary: We propose LW-FedSSL, a layer-wise self-supervised learning approach that allows edge devices to incrementally train a single layer of the model at a time.
We introduce server-side calibration and representation alignment mechanisms to ensure LW-FedSSL delivers performance on par with conventional federated self-supervised learning (FedSSL)
With the proposed mechanisms, LW-FedSSL achieves a $3.3 times$ reduction in memory usage, $2.1 times$ fewer computational operations (FLOPs), and a $3.2 times$ lower communication cost.
- Score: 14.413037571286564
- License:
- Abstract: Many studies integrate federated learning (FL) with self-supervised learning (SSL) to take advantage of raw data distributed across edge devices. However, edge devices often struggle with high computation and communication costs imposed by SSL and FL algorithms. To tackle this hindrance, we propose LW-FedSSL, a layer-wise federated self-supervised learning approach that allows edge devices to incrementally train a single layer of the model at a time. We introduce server-side calibration and representation alignment mechanisms to ensure LW-FedSSL delivers performance on par with conventional federated self-supervised learning (FedSSL) while significantly lowering resource demands. In a pure layer-wise training scheme, training one layer at a time may limit effective interaction between different layers of the model. The server-side calibration mechanism takes advantage of the resource-rich FL server to ensure smooth collaboration between different layers of the global model. During local training, the representation alignment mechanism encourages closeness between representations of local models and those of the global model, thereby preserving the layer cohesion established by server-side calibration. With the proposed mechanisms, LW-FedSSL achieves a $3.3 \times$ reduction in memory usage, $2.1 \times$ fewer computational operations (FLOPs), and a $3.2 \times$ lower communication cost while maintaining the same level of performance as its end-to-end training counterpart. Additionally, we explore a progressive training strategy called Prog-FedSSL, which matches end-to-end training in memory requirements but offers a $1.8 \times$ reduction in FLOPs and communication costs. Although Prog-FedSSL is not as resource-efficient as LW-FedSSL, its performance improvements make it a suitable candidate for FL environments with more lenient resource constraints.
Related papers
- R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Learner Referral for Cost-Effective Federated Learning Over Hierarchical
IoT Networks [21.76836812021954]
This paper aided federated selection (LRef-FedCS), communications resource, and local model accuracy (LMAO) methods.
Our proposed LRef-FedCS approach could achieve a good balance between high global accuracy and reducing cost.
arXiv Detail & Related papers (2023-07-19T13:33:43Z) - When Computing Power Network Meets Distributed Machine Learning: An
Efficient Federated Split Learning Framework [6.871107511111629]
CPN-FedSL is a Federated Split Learning (FedSL) framework over Computing Power Network (CPN)
We build a dedicated model to capture the basic settings and learning characteristics (e.g., latency, flow, convergence)
arXiv Detail & Related papers (2023-05-22T12:36:52Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
We propose hierarchical PFL (HPFL), an algorithm for deploying PFL over massive MEC networks.
HPFL combines the objectives of training loss minimization and round latency minimization while jointly determining the optimal bandwidth allocation.
arXiv Detail & Related papers (2023-03-19T06:00:05Z) - Communication and Storage Efficient Federated Split Learning [19.369076939064904]
Federated Split Learning preserves the parallel model training principle of FL.
Server has to maintain separate models for every client, resulting in a significant computation and storage requirement.
This paper proposes a communication and storage efficient federated and split learning strategy.
arXiv Detail & Related papers (2023-02-11T04:44:29Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - SplitFed: When Federated Learning Meets Split Learning [16.212941272007285]
Federated learning (FL) and split learning (SL) are two popular distributed machine learning approaches.
This paper presents a novel approach, named splitfed learning (SFL), that amalgamates the two approaches.
SFL provides similar test accuracy and communication efficiency as SL while significantly decreasing its computation time per global epoch than in SL for multiple clients.
arXiv Detail & Related papers (2020-04-25T08:52:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.