Resource-Efficient Federated Multimodal Learning via Layer-wise and Progressive Training
- URL: http://arxiv.org/abs/2407.15426v2
- Date: Mon, 21 Oct 2024 01:58:53 GMT
- Title: Resource-Efficient Federated Multimodal Learning via Layer-wise and Progressive Training
- Authors: Ye Lin Tun, Chu Myaet Thwal, Minh N. H. Nguyen, Choong Seon Hong,
- Abstract summary: We introduce LW-FedMML, a layer-wise federated multimodal learning approach which decomposes the training process into multiple stages.
We conduct extensive experiments across various FL and multimodal learning settings to validate the effectiveness of our proposed method.
Specifically, LW-FedMML reduces memory usage by up to $2.7times$, computational operations (FLOPs) by $2.4times$, and total communication cost by $2.3times$.
- Score: 15.462969044840868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining different data modalities enables deep neural networks to tackle complex tasks more effectively, making multimodal learning increasingly popular. To harness multimodal data closer to end users, it is essential to integrate multimodal learning with privacy-preserving approaches like federated learning (FL). However, compared to conventional unimodal learning, multimodal setting requires dedicated encoders for each modality, resulting in larger and more complex models. Training these models requires significant resources, presenting a substantial challenge for FL clients operating with limited computation and communication resources. To address these challenges, we introduce LW-FedMML, a layer-wise federated multimodal learning approach which decomposes the training process into multiple stages. Each stage focuses on training only a portion of the model, thereby significantly reducing the memory and computational requirements. Moreover, FL clients only need to exchange the trained model portion with the central server, lowering the resulting communication cost. We conduct extensive experiments across various FL and multimodal learning settings to validate the effectiveness of our proposed method. The results demonstrate that LW-FedMML can compete with conventional end-to-end federated multimodal learning (FedMML) while significantly reducing the resource burden on FL clients. Specifically, LW-FedMML reduces memory usage by up to $2.7\times$, computational operations (FLOPs) by $2.4\times$, and total communication cost by $2.3\times$. We also explore a progressive training approach called Prog-FedMML. While it offers lesser resource efficiency than LW-FedMML, Prog-FedMML has the potential to surpass the performance of end-to-end FedMML, making it a viable option for scenarios with fewer resource constraints.
Related papers
- eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
Large Language Models (LLMs) herald a transformative era in artificial intelligence (AI)
This paper introduces an effective approach that enhances the operational efficiency and affordability of LLM inference.
arXiv Detail & Related papers (2024-11-24T22:50:02Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Prioritizing Modalities: Flexible Importance Scheduling in Federated Multimodal Learning [5.421492821020181]
Federated Learning (FL) is a distributed machine learning approach that enables devices to collaboratively train models without sharing their local data.
Applying FL to real-world data presents challenges, particularly as most existing FL research focuses on unimodal data.
We propose FlexMod, a novel approach to enhance computational efficiency in MFL by adaptively allocating training resources for each modality encoder.
arXiv Detail & Related papers (2024-08-13T01:14:27Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtend is an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models.
MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models.
arXiv Detail & Related papers (2024-08-07T02:28:37Z) - CELLM: An Efficient Communication in Large Language Models Training for Federated Learning [0.0]
This thesis aims to develop efficient training methods for large language models (LLMs) in Federated Learning (FL)
First, we use low-rank adaptation (LoRA) to reduce the computational load of local model training.
Second, we communicate sparse updates throughout training to significantly cut down on communication costs.
arXiv Detail & Related papers (2024-07-30T05:24:08Z) - SoupLM: Model Integration in Large Language and Multi-Modal Models [51.12227693121004]
Training large language models (LLMs) requires significant computing resources.
Existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks.
arXiv Detail & Related papers (2024-07-11T05:38:15Z) - Fair Concurrent Training of Multiple Models in Federated Learning [32.74516106486226]
Federated learning (FL) enables collaborative learning across multiple clients.
Recent proliferation of FL applications may increasingly require multiple FL tasks to be trained simultaneously.
Current MMFL algorithms use naive average-based client-task allocation schemes.
We propose a difficulty-aware algorithm that dynamically allocates clients to tasks in each training round.
arXiv Detail & Related papers (2024-04-22T02:41:10Z) - Efficient Multimodal Fusion via Interactive Prompting [62.08292938484994]
Large-scale pre-training has brought unimodal fields such as computer vision and natural language processing to a new era.
We propose an efficient and flexible multimodal fusion method, namely PMF, tailored for fusing unimodally pre-trained transformers.
arXiv Detail & Related papers (2023-04-13T07:31:51Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.