Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
- URL: http://arxiv.org/abs/2401.11665v3
- Date: Fri, 21 Jun 2024 01:54:15 GMT
- Title: Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte Carlo
- Authors: Haoyang Zheng, Wei Deng, Christian Moya, Guang Lin,
- Abstract summary: We propose an approximate Thompson sampling strategy utilizing Langevin Monte Carlo.
Based on the standard smoothness and log-concavity conditions, we study the accelerated posterior concentration and sampling.
Our algorithm is empirically validated through synthetic experiments in high-dimensional bandit problems.
- Score: 7.968641076961955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approximate Thompson sampling with Langevin Monte Carlo broadens its reach from Gaussian posterior sampling to encompass more general smooth posteriors. However, it still encounters scalability issues in high-dimensional problems when demanding high accuracy. To address this, we propose an approximate Thompson sampling strategy, utilizing underdamped Langevin Monte Carlo, where the latter is the go-to workhorse for simulations of high-dimensional posteriors. Based on the standard smoothness and log-concavity conditions, we study the accelerated posterior concentration and sampling using a specific potential function. This design improves the sample complexity for realizing logarithmic regrets from $\mathcal{\tilde O}(d)$ to $\mathcal{\tilde O}(\sqrt{d})$. The scalability and robustness of our algorithm are also empirically validated through synthetic experiments in high-dimensional bandit problems.
Related papers
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
Proximal samplers (SPS) for sampling from non-log-concave distributions are studied.
We show that the convergence to the target distribution can be guaranteed as long as the algorithm trajectory is bounded.
We provide two implementable variants based on Langevin dynamics (SGLD) and Langevin-MALA, giving rise to SPS-SGLD and SPS-MALA.
arXiv Detail & Related papers (2024-05-27T00:53:18Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL)
We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo.
Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
arXiv Detail & Related papers (2023-05-29T17:11:28Z) - Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits [17.11922027966447]
This work provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits.
For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC.
arXiv Detail & Related papers (2022-11-11T02:23:39Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
We study adaptive sensing of point processes, a widely used model from spatial statistics.
We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis.
Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (textscCox-Thompson) and top-two posterior sampling (textscTop2) principles.
arXiv Detail & Related papers (2021-10-21T14:47:06Z) - Diffusion Approximations for Thompson Sampling [4.390757904176221]
We show that the dynamics of Thompson sampling evolve according to discrete versions of SDE's horizon and ODE's.
Our weak convergence theory is developed from first principles using the Continuous Mapping Theorem.
arXiv Detail & Related papers (2021-05-19T16:28:01Z) - Analysis and Design of Thompson Sampling for Stochastic Partial
Monitoring [91.22679787578438]
We present a novel Thompson-sampling-based algorithm for partial monitoring.
We prove that the new algorithm achieves the logarithmic problem-dependent expected pseudo-regret $mathrmO(log T)$ for a linearized variant of the problem with local observability.
arXiv Detail & Related papers (2020-06-17T05:48:33Z) - On Thompson Sampling with Langevin Algorithms [106.78254564840844]
Thompson sampling for multi-armed bandit problems enjoys favorable performance in both theory and practice.
It suffers from a significant limitation computationally, arising from the need for samples from posterior distributions at every iteration.
We propose two Markov Chain Monte Carlo (MCMC) methods tailored to Thompson sampling to address this issue.
arXiv Detail & Related papers (2020-02-23T22:35:29Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
We propose an easy-to-use and general-purpose approach for fast posterior sampling.
We demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
arXiv Detail & Related papers (2020-02-21T14:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.