INCPrompt: Task-Aware incremental Prompting for Rehearsal-Free Class-incremental Learning
- URL: http://arxiv.org/abs/2401.11667v3
- Date: Mon, 8 Apr 2024 03:12:52 GMT
- Title: INCPrompt: Task-Aware incremental Prompting for Rehearsal-Free Class-incremental Learning
- Authors: Zhiyuan Wang, Xiaoyang Qu, Jing Xiao, Bokui Chen, Jianzong Wang,
- Abstract summary: INCPrompt is an innovative continual learning solution that effectively addresses catastrophic forgetting.
Our comprehensive evaluation across multiple continual learning benchmarks demonstrates INCPrompt's superiority over existing algorithms.
- Score: 36.506275240271925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces INCPrompt, an innovative continual learning solution that effectively addresses catastrophic forgetting. INCPrompt's key innovation lies in its use of adaptive key-learner and task-aware prompts that capture task-relevant information. This unique combination encapsulates general knowledge across tasks and encodes task-specific knowledge. Our comprehensive evaluation across multiple continual learning benchmarks demonstrates INCPrompt's superiority over existing algorithms, showing its effectiveness in mitigating catastrophic forgetting while maintaining high performance. These results highlight the significant impact of task-aware incremental prompting on continual learning performance.
Related papers
- PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
Incremental Learning (IL) aims to learn deep models on sequential tasks continually.
Recent vast pre-trained models (PTMs) have achieved outstanding performance by prompt technique in practical IL without the old samples.
arXiv Detail & Related papers (2024-07-04T10:37:58Z) - Mitigating Interference in the Knowledge Continuum through Attention-Guided Incremental Learning [17.236861687708096]
Attention-Guided Incremental Learning' (AGILE) is a rehearsal-based CL approach that incorporates compact task attention to effectively reduce interference between tasks.
AGILE significantly improves generalization performance by mitigating task interference and outperforming rehearsal-based approaches in several CL scenarios.
arXiv Detail & Related papers (2024-05-22T20:29:15Z) - Hierarchical Prompts for Rehearsal-free Continual Learning [67.37739666753008]
Continual learning endeavors to equip the model with the capability to integrate current task knowledge while mitigating the forgetting of past task knowledge.
Inspired by prompt tuning, prompt-based methods maintain a frozen backbone and train with slight learnable prompts.
This paper introduces a novel rehearsal-free paradigm for continual learning termed Hierarchical Prompts (H-Prompts)
arXiv Detail & Related papers (2024-01-21T16:59:44Z) - Sharing Knowledge in Multi-Task Deep Reinforcement Learning [57.38874587065694]
We study the benefit of sharing representations among tasks to enable the effective use of deep neural networks in Multi-Task Reinforcement Learning.
We prove this by providing theoretical guarantees that highlight the conditions for which is convenient to share representations among tasks.
arXiv Detail & Related papers (2024-01-17T19:31:21Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Minimax Forward and Backward Learning of Evolving Tasks with Performance
Guarantees [6.008132390640294]
The incremental learning of a growing sequence of tasks holds promise to enable accurate classification.
This paper presents incremental minimax risk classifiers (IMRCs) that effectively exploit forward and backward learning.
IMRCs can result in a significant performance improvement, especially for reduced sample sizes.
arXiv Detail & Related papers (2023-10-24T16:21:41Z) - Active Continual Learning: On Balancing Knowledge Retention and
Learnability [43.6658577908349]
Acquiring new knowledge without forgetting what has been learned in a sequence of tasks is the central focus of continual learning (CL)
This paper considers the under-explored problem of active continual learning (ACL) for a sequence of active learning (AL) tasks.
We investigate the effectiveness and interplay between several AL and CL algorithms in the domain, class and task-incremental scenarios.
arXiv Detail & Related papers (2023-05-06T04:11:03Z) - Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene
Text Recognition [60.36540008537054]
In this work, we excavate the implicit task, character counting within the traditional text recognition, without additional labor annotation cost.
We design a two-branch reciprocal feature learning framework in order to adequately utilize the features from both the tasks.
Experiments on 7 benchmarks show the advantages of the proposed methods in both text recognition and the new-built character counting tasks.
arXiv Detail & Related papers (2021-05-13T12:27:35Z) - Towards All-around Knowledge Transferring: Learning From Task-irrelevant
Labels [44.036667329736225]
Existing efforts mainly focus on transferring task-relevant knowledge from other similar data to tackle the issue.
To date, no large-scale studies have been performed to investigate the impact of task-irrelevant features.
We propose Task-Irrelevant Transfer Learning to exploit taskirrelevant features, which mainly are extracted from task-irrelevant labels.
arXiv Detail & Related papers (2020-11-17T06:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.