Tensor-view Topological Graph Neural Network
- URL: http://arxiv.org/abs/2401.12007v3
- Date: Tue, 30 Jan 2024 03:10:15 GMT
- Title: Tensor-view Topological Graph Neural Network
- Authors: Tao Wen, Elynn Chen, Yuzhou Chen
- Abstract summary: Graph neural networks (GNNs) have recently gained growing attention in graph learning.
Existing GNNs only use local information from a very limited neighborhood around each node.
We propose a novel Topological Graph Neural Network (TTG-NN), a class of simple yet effective deep learning.
Real data experiments show that the proposed TTG-NN outperforms 20 state-of-the-art methods on various graph benchmarks.
- Score: 16.433092191206534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph classification is an important learning task for graph-structured data.
Graph neural networks (GNNs) have recently gained growing attention in graph
learning and have shown significant improvements in many important graph
problems. Despite their state-of-the-art performances, existing GNNs only use
local information from a very limited neighborhood around each node, suffering
from loss of multi-modal information and overheads of excessive computation. To
address these issues, we propose a novel Tensor-view Topological Graph Neural
Network (TTG-NN), a class of simple yet effective topological deep learning
built upon persistent homology, graph convolution, and tensor operations. This
new method incorporates tensor learning to simultaneously capture Tensor-view
Topological (TT), as well as Tensor-view Graph (TG) structural information on
both local and global levels. Computationally, to fully exploit graph topology
and structure, we propose two flexible TT and TG representation learning
modules that disentangle feature tensor aggregation and transformation and
learn to preserve multi-modal structure with less computation. Theoretically,
we derive high probability bounds on both the out-of-sample and in-sample mean
squared approximation errors for our proposed Tensor Transformation Layer
(TTL). Real data experiments show that the proposed TTG-NN outperforms 20
state-of-the-art methods on various graph benchmarks.
Related papers
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
We propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of Graph networks (GNNs)
GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks.
In experiments on eleven real-world datasets, after being trained by neural prediction, GNNs significantly outperform their original performance on node classification, graph classification, and edge tasks.
arXiv Detail & Related papers (2024-07-16T03:59:18Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
Graph Neural Networks (GNNs) have attracted increasing attention in recent years.
Recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph.
We propose a novel framework for semi-supervised classification.
arXiv Detail & Related papers (2022-12-04T06:17:11Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Topological Relational Learning on Graphs [2.4692806302088868]
Graph neural networks (GNNs) have emerged as a powerful tool for graph classification and representation learning.
We propose a novel topological relational inference (TRI) which allows for integrating higher-order graph information to GNNs.
We show that the new TRI-GNN outperforms all 14 state-of-the-art baselines on 6 out 7 graphs and exhibit higher robustness to perturbations.
arXiv Detail & Related papers (2021-10-29T04:03:27Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.