論文の概要: Unsupervised Learning of Graph from Recipes
- arxiv url: http://arxiv.org/abs/2401.12088v1
- Date: Mon, 22 Jan 2024 16:25:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-23 13:25:44.854322
- Title: Unsupervised Learning of Graph from Recipes
- Title(参考訳): レシピからの教師なしグラフ学習
- Authors: Aissatou Diallo, Antonis Bikakis, Luke Dickens, Anthony Hunter, Rob
Miller
- Abstract要約: 本稿では,レシピから関連する情報を識別し,レシピ中のアクションのシーケンスを表すグラフを生成するモデルを提案する。
テキストを1つのシーケンスで符号化する$mathsfGNN$のグラフ構造とパラメータを反復的に学習する。
同定されたエンティティを注釈付きデータセットと比較し、入力テキストと出力テキストの差を比較し、生成したグラフとアートメソッドの状態から生成されたグラフを比較して、アプローチを評価する。
- 参考スコア(独自算出の注目度): 8.410402833223364
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cooking recipes are one of the most readily available kinds of procedural
text. They consist of natural language instructions that can be challenging to
interpret. In this paper, we propose a model to identify relevant information
from recipes and generate a graph to represent the sequence of actions in the
recipe. In contrast with other approaches, we use an unsupervised approach. We
iteratively learn the graph structure and the parameters of a $\mathsf{GNN}$
encoding the texts (text-to-graph) one sequence at a time while providing the
supervision by decoding the graph into text (graph-to-text) and comparing the
generated text to the input. We evaluate the approach by comparing the
identified entities with annotated datasets, comparing the difference between
the input and output texts, and comparing our generated graphs with those
generated by state of the art methods.
- Abstract(参考訳): 料理のレシピは、最も手頃な手続きのテキストの1つである。
これらは、解釈が難しい自然言語命令から成り立っている。
本稿では,レシピから関連する情報を識別し,レシピ中のアクションのシーケンスを表すグラフを生成するモデルを提案する。
他のアプローチとは対照的に、教師なしのアプローチを使う。
我々は、グラフをテキスト(グラフからテキスト)に復号し、生成されたテキストと入力を比較しながら、一度に1つのテキスト(テキストからグラフ)を符号化する$\mathsf{GNN}$のグラフ構造とパラメータを反復的に学習する。
本手法は,識別されたエンティティと注釈付きデータセットを比較し,入力テキストと出力テキストの違いを比較し,生成したグラフと art メソッドの状態によって生成されたグラフを比較して評価する。
関連論文リスト
- Instruction-Based Molecular Graph Generation with Unified Text-Graph Diffusion Model [22.368332915420606]
Unified Text-Graph Diffusion Model (UTGDiff) は命令から分子グラフを生成するフレームワークである。
UTGDiffは、事前訓練された言語モデルから派生したデノナイジングネットワークとして統一されたテキストグラフ変換器を備えている。
実験の結果,UTGDiffは命令ベース分子の生成と編集に関わるタスクにおいて,シーケンスベースベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-08-19T11:09:15Z) - Explanation Graph Generation via Generative Pre-training over Synthetic
Graphs [6.25568933262682]
説明グラフの生成は,ユーザの入力に応じて説明グラフを作成することを目的とした重要なタスクである。
現在の研究では、ラベル付きグラフで注釈付けされた小さな下流データセット上で、テキストベースの事前学習言語モデルを微調整するのが一般的である。
本稿では,説明グラフ生成タスクのための新しい事前学習フレームワークEG3Pを提案する。
論文 参考訳(メタデータ) (2023-06-01T13:20:22Z) - Improving Graph-Based Text Representations with Character and Word Level
N-grams [30.699644290131044]
単語と文字n-gramノードを文書ノードと組み合わせた新しい単語文字テキストグラフを提案する。
また、提案したテキストグラフをモデル化するための2つの新しいグラフベースニューラルモデルWCTextGCNとWCTextGATを提案する。
論文 参考訳(メタデータ) (2022-10-12T08:07:54Z) - What does Transformer learn about source code? [26.674180481543264]
トランスをベースとした表現モデルは、多くのタスクで最先端(SOTA)のパフォーマンスを達成した。
本稿では,変換器が学習した構造情報を調べる手法であるアグリゲートアテンションスコアを提案する。
また、事前学習したモデルからプログラムグラフを自動的に抽出する新しい方法である、集約されたアテンショングラフも提案した。
論文 参考訳(メタデータ) (2022-07-18T09:33:04Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
短文分類のためのグラフニューラルネットワーク(GNN)に基づく ShiNE と呼ばれる新しい手法を提案する。
まず,短文データセットを単語レベル成分グラフからなる階層的不均一グラフとしてモデル化する。
そして、類似した短いテキスト間の効果的なラベル伝搬を容易にするショート文書グラフを動的に学習する。
論文 参考訳(メタデータ) (2021-10-30T05:33:05Z) - Learning to Generate Scene Graph from Natural Language Supervision [52.18175340725455]
シーングラフと呼ばれる画像内の局所化オブジェクトとその関係をグラフィカルに表現するために,画像と文のペアから学習する最初の方法の1つを提案する。
既製のオブジェクト検出器を利用してオブジェクトのインスタンスを識別し、ローカライズし、検出された領域のラベルとキャプションから解析された概念をマッチングし、シーングラフを学習するための"擬似ラベル"を作成する。
論文 参考訳(メタデータ) (2021-09-06T03:38:52Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Structural Information Preserving for Graph-to-Text Generation [59.00642847499138]
グラフ・トゥ・テキスト生成の課題は、入力グラフの意味を保存した文を生成することである。
入力情報を保存するためのモデルとして,より豊かなトレーニング信号を活用することで,この問題に取り組むことを提案する。
グラフからテキストへの生成のための2つのベンチマークに関する実験は、最先端のベースラインに対するアプローチの有効性を示しています。
論文 参考訳(メタデータ) (2021-02-12T20:09:01Z) - Promoting Graph Awareness in Linearized Graph-to-Text Generation [72.83863719868364]
局所グラフ構造を符号化する線形化モデルの能力を検討する。
本研究は,モデルの暗黙のグラフ符号化の品質を高めるための解法である。
これらの消音足場は、低リソース設定における下流生成の大幅な改善につながることが分かりました。
論文 参考訳(メタデータ) (2020-12-31T18:17:57Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。