Approximation of Pufferfish Privacy for Gaussian Priors
- URL: http://arxiv.org/abs/2401.12391v2
- Date: Mon, 6 May 2024 22:07:29 GMT
- Title: Approximation of Pufferfish Privacy for Gaussian Priors
- Authors: Ni Ding,
- Abstract summary: We show that $(epsilon, delta)$-pufferfish privacy is attained if the additive Laplace noise is calibrated to the differences in mean and variance of the Gaussian distributions conditioned on every discriminative secret pair.
A typical application is the private release of the summation (or average) query.
- Score: 6.2584995033090625
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper studies how to approximate pufferfish privacy when the adversary's prior belief of the published data is Gaussian distributed. Using Monge's optimal transport plan, we show that $(\epsilon, \delta)$-pufferfish privacy is attained if the additive Laplace noise is calibrated to the differences in mean and variance of the Gaussian distributions conditioned on every discriminative secret pair. A typical application is the private release of the summation (or average) query, for which sufficient conditions are derived for approximating $\epsilon$-statistical indistinguishability in individual's sensitive data. The result is then extended to arbitrary prior beliefs trained by Gaussian mixture models (GMMs): calibrating Laplace noise to a convex combination of differences in mean and variance between Gaussian components attains $(\epsilon,\delta)$-pufferfish privacy.
Related papers
- Scalable DP-SGD: Shuffling vs. Poisson Subsampling [61.19794019914523]
We provide new lower bounds on the privacy guarantee of the multi-epoch Adaptive Linear Queries (ABLQ) mechanism with shuffled batch sampling.
We show substantial gaps when compared to Poisson subsampling; prior analysis was limited to a single epoch.
We introduce a practical approach to implement Poisson subsampling at scale using massively parallel computation.
arXiv Detail & Related papers (2024-11-06T19:06:16Z) - How Private are DP-SGD Implementations? [61.19794019914523]
We show that there can be a substantial gap between the privacy analysis when using the two types of batch sampling.
Our result shows that there can be a substantial gap between the privacy analysis when using the two types of batch sampling.
arXiv Detail & Related papers (2024-03-26T13:02:43Z) - Unified Enhancement of Privacy Bounds for Mixture Mechanisms via
$f$-Differential Privacy [41.51051636162107]
This paper focuses on improving privacy bounds for shuffling models and one-iteration differentially private gradient descent.
We derive a closed-form expression of the trade-off function for shuffling models that outperforms the most up-to-date results.
We also study an $f$-DP analog of the advanced joint convexity of the hockey-stick divergence related to $(epsilon,delta)$-DP.
arXiv Detail & Related papers (2023-10-30T19:37:51Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
A classical approach to private mean estimation is to compute the true mean and add unbiased, but possibly correlated, Gaussian noise to it.
We show that for every input dataset, an unbiased mean estimator satisfying concentrated differential privacy introduces approximately at least as much error.
arXiv Detail & Related papers (2023-01-31T18:47:42Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Infinitely Divisible Noise in the Low Privacy Regime [9.39772079241093]
Federated learning, in which training data is distributed among users and never shared, has emerged as a popular approach to privacy-preserving machine learning.
We present the first divisible infinitely noise distribution for real-valued data that achieves $varepsilon$-differential privacy.
arXiv Detail & Related papers (2021-10-13T08:16:43Z) - Differential Privacy of Dirichlet Posterior Sampling [0.0]
We study the inherent privacy of releasing a single draw from a Dirichlet posterior distribution.
With the notion of truncated concentrated differential privacy (tCDP), we are able to derive a simple privacy guarantee of the Dirichlet posterior sampling.
arXiv Detail & Related papers (2021-10-03T07:41:19Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - Fisher information under local differential privacy [5.582101184758529]
We show how Fisher information from statistical samples can scale with the privacy parameter $varepsilon$ under local differential privacy constraints.
We further apply these inequalities to sparse Bernoulli models and demonstrate privacy mechanisms and estimators with order-matching squared $ell2$ error.
arXiv Detail & Related papers (2020-05-21T17:05:09Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.