Training-Free Action Recognition and Goal Inference with Dynamic Frame Selection
- URL: http://arxiv.org/abs/2401.12471v2
- Date: Wed, 28 Aug 2024 09:48:24 GMT
- Title: Training-Free Action Recognition and Goal Inference with Dynamic Frame Selection
- Authors: Ee Yeo Keat, Zhang Hao, Alexander Matyasko, Basura Fernando,
- Abstract summary: VidTFS is a Training-free, open-vocabulary video goal and action inference framework.
Our experiments demonstrate that the proposed frame selection module improves the performance of the framework significantly.
We validate the performance of the proposed VidTFS on four widely used video datasets.
- Score: 51.004020874336284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce VidTFS, a Training-free, open-vocabulary video goal and action inference framework that combines the frozen vision foundational model (VFM) and large language model (LLM) with a novel dynamic Frame Selection module. Our experiments demonstrate that the proposed frame selection module improves the performance of the framework significantly. We validate the performance of the proposed VidTFS on four widely used video datasets, including CrossTask, COIN, UCF101, and ActivityNet, covering goal inference and action recognition tasks under open-vocabulary settings without requiring any training or fine-tuning. The results show that VidTFS outperforms pretrained and instruction-tuned multimodal language models that directly stack LLM and VFM for downstream video inference tasks. Our VidTFS with its adaptability shows the future potential for generalizing to new training-free video inference tasks.
Related papers
- TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models [52.590072198551944]
Recent advances in multimodal Large Language Models (LLMs) have shown great success in understanding multi-modal contents.
For video understanding tasks, training-based video LLMs are difficult to build due to the scarcity of high-quality, curated video-text paired data.
In this work, we explore the limitations of the existing compression strategies for building a training-free video LLM.
arXiv Detail & Related papers (2024-11-17T13:08:29Z) - Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Teller is a video-language foundation model that leverages multi-modal fusion and fine-grained modality alignment.
Video-Teller boosts the training efficiency by utilizing frozen pretrained vision and language modules.
It capitalizes on the robust linguistic capabilities of large language models, enabling the generation of both concise and elaborate video descriptions.
arXiv Detail & Related papers (2023-10-08T03:35:27Z) - VLAB: Enhancing Video Language Pre-training by Feature Adapting and
Blending [78.1399386935455]
Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations.
We propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature generativearity and Blending.
VLAB transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks.
arXiv Detail & Related papers (2023-05-22T15:54:22Z) - Self-Supervised Video Representation Learning with Motion-Contrastive
Perception [13.860736711747284]
Motion-Contrastive Perception Network (MCPNet)
MCPNet consists of two branches, namely, Motion Information Perception (MIP) and Contrastive Instance Perception (CIP)
Our method outperforms current state-of-the-art visual-only self-supervised approaches.
arXiv Detail & Related papers (2022-04-10T05:34:46Z) - UniVL: A Unified Video and Language Pre-Training Model for Multimodal
Understanding and Generation [76.12027504427708]
This paper proposes UniVL: a Unified Video and Language pre-training model for both multimodal understanding and generation.
It comprises four components, including two single-modal encoders, a cross encoder, and a decoder with the Transformer backbone.
We develop two pre-training strategies, stage by stage pre-training (StagedP) and enhanced video representation (EnhancedV) to make the training process of the UniVL more effective.
arXiv Detail & Related papers (2020-02-15T10:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.