Near-Optimal Algorithms for Constrained k-Center Clustering with Instance-level Background Knowledge
- URL: http://arxiv.org/abs/2401.12533v3
- Date: Wed, 15 May 2024 01:42:47 GMT
- Title: Near-Optimal Algorithms for Constrained k-Center Clustering with Instance-level Background Knowledge
- Authors: Longkun Guo, Chaoqi Jia, Kewen Liao, Zhigang Lu, Minhui Xue,
- Abstract summary: We build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets.
We arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2.
- Score: 12.808663917871888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Center-based clustering has attracted significant research interest from both theory and practice. In many practical applications, input data often contain background knowledge that can be used to improve clustering results. In this work, we build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets. However, most clustering problems including $k$-center are inherently $\mathcal{NP}$-hard, while the more complex constrained variants are known to suffer severer approximation and computation barriers that significantly limit their applicability. By employing a suite of techniques including reverse dominating sets, linear programming (LP) integral polyhedron, and LP duality, we arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2. We also construct competitive baseline algorithms and empirically evaluate our approximation algorithm against them on a variety of real datasets. The results validate our theoretical findings and demonstrate the great advantages of our algorithm in terms of clustering cost, clustering quality, and running time.
Related papers
- Fair Clustering for Data Summarization: Improved Approximation Algorithms and Complexity Insights [16.120911591795295]
In some applications all data points can be chosen as centers, in the general setting, centers must be chosen from a subset of points, referred as facilities or suppliers.
In this work, we focus on fair data summarization modeled as the fair $k$-supplier problem, where data consists of several groups, and a minimum number of centers must be selected from each group.
arXiv Detail & Related papers (2024-10-16T18:00:19Z) - Query-Efficient Correlation Clustering with Noisy Oracle [17.11782578276788]
We introduce two novel formulations of online learning problems rooted in the paradigm of Pure Exploration in Combinatorial Multi-Armed Bandits (PE-CMAB)
We design algorithms that combine a sampling strategy with a classic approximation algorithm for correlation and study their theoretical guarantees.
Our results are the first examples of clustering-time algorithms that work for the case of PE-CMAB in which the underlying offline optimization problem is NP-hard.
arXiv Detail & Related papers (2024-02-02T13:31:24Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Neural Capacitated Clustering [6.155158115218501]
We propose a new method for the Capacitated Clustering Problem (CCP) that learns a neural network to predict the assignment probabilities of points to cluster centers.
In our experiments on artificial data and two real world datasets our approach outperforms several state-of-the-art mathematical and solvers from the literature.
arXiv Detail & Related papers (2023-02-10T09:33:44Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - Learning-Augmented $k$-means Clustering [44.06375788674942]
We consider the $k$-means problem augmented with a predictor that, given any point, returns its cluster label in an approximately optimal clustering up to some, possibly adversarial, error.
We present an algorithm whose performance improves along with the accuracy of the predictor, even though na"ively following the accurate predictor can still lead to a high clustering cost.
We evaluate our algorithms on real datasets and show significant improvements in the quality of clustering.
arXiv Detail & Related papers (2021-10-27T00:11:49Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Fair Correlation Clustering [92.15492066925977]
We obtain approximation algorithms for correlation clustering under several important types of fairness constraints.
We show that fair solutions to correlation clustering can be obtained with limited increase in cost compared to the state-of-the-art (unfair) algorithms.
arXiv Detail & Related papers (2020-02-06T14:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.