Enhancing Next Destination Prediction: A Novel Long Short-Term Memory Neural Network Approach Using Real-World Airline Data
- URL: http://arxiv.org/abs/2401.12830v2
- Date: Mon, 16 Sep 2024 14:40:16 GMT
- Title: Enhancing Next Destination Prediction: A Novel Long Short-Term Memory Neural Network Approach Using Real-World Airline Data
- Authors: Salih Salihoglu, Gulser Koksal, Orhan Abar,
- Abstract summary: This study focuses on developing a precise model that captures the sequential patterns and dependencies in travel data.
A novel model architecture with a sliding window approach is proposed for destination prediction in the transportation industry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the modern transportation industry, accurate prediction of travelers' next destinations brings multiple benefits to companies, such as customer satisfaction and targeted marketing. This study focuses on developing a precise model that captures the sequential patterns and dependencies in travel data, enabling accurate predictions of individual travelers' future destinations. To achieve this, a novel model architecture with a sliding window approach based on Long Short-Term Memory (LSTM) is proposed for destination prediction in the transportation industry. The experimental results highlight satisfactory performance and high scores achieved by the proposed model across different data sizes and performance metrics. This research contributes to advancing destination prediction methods, empowering companies to deliver personalized recommendations and optimize customer experiences in the dynamic travel landscape.
Related papers
- Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
Our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf.
We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach.
We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up.
arXiv Detail & Related papers (2024-06-12T11:50:51Z) - Predicting the Skies: A Novel Model for Flight-Level Passenger Traffic
Forecasting [0.0]
This study introduces a novel, multimodal deep learning approach to the challenge of predicting flight-level passenger traffic.
Our model ingests historical traffic data, fare closure information, and seasonality attributes specific to each flight.
Our model demonstrates an approximate 33% improvement in Mean Squared Error compared to traditional benchmarks.
arXiv Detail & Related papers (2024-01-07T06:51:26Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - A Survey on Service Route and Time Prediction in Instant Delivery:
Taxonomy, Progress, and Prospects [58.746820564288846]
Route&Time Prediction (RTP) aims to estimate the future service route as well as the arrival time of a worker.
Despite a plethora of algorithms developed to date, there is no systematic, comprehensive survey to guide researchers in this domain.
We categorize these methods based on three criteria: (i) type of task, subdivided into only-route prediction, only-time prediction, and joint route&time prediction; (ii) model architecture, which encompasses sequence-based and graph-based models; and (iii) learning paradigm, including Supervised Learning (SL) and Deep Reinforcement
arXiv Detail & Related papers (2023-09-03T14:43:33Z) - Exploring Deep Learning Approaches to Predict Person and Vehicle Trips:
An Analysis of NHTS Data [0.0]
This study explores the potential of deep learning techniques to transform the way we approach trip predictions.
We developed and trained a deep learning model for predicting person and vehicle trips.
Our model achieved an impressive accuracy of 98% for person trip prediction and 96% for vehicle trip estimation.
arXiv Detail & Related papers (2023-08-10T16:06:10Z) - How do you go where? Improving next location prediction by learning
travel mode information using transformers [6.003006906852134]
We propose a transformer decoder-based neural network to predict the next location an individual will visit based on historical locations, time, and travel modes.
In particular, the prediction of the next travel mode is designed as an auxiliary task to help guide the network's learning.
Our experiments show that the proposed method significantly outperforms other state-of-the-art next location prediction methods.
arXiv Detail & Related papers (2022-10-08T19:36:58Z) - Meta-Learning over Time for Destination Prediction Tasks [53.12827614887103]
A need to understand and predict vehicles' behavior underlies both public and private goals in the transportation domain.
Recent studies have found, at best, only marginal improvements in predictive performance from incorporating temporal information.
We propose an approach based on hypernetworks, in which a neural network learns to change its own weights in response to an input.
arXiv Detail & Related papers (2022-06-29T17:58:12Z) - LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of
Dynamic Agents [10.869902339190949]
We propose a novel prediction model, referred to as the lane-aware prediction (LaPred) network.
LaPred uses the instance-level lane entities extracted from a semantic map to predict the multi-modal future trajectories.
The experiments conducted on the public nuScenes and Argoverse dataset demonstrate that the proposed LaPred method significantly outperforms the existing prediction models.
arXiv Detail & Related papers (2021-04-01T04:33:36Z) - A machine learning approach to itinerary-level booking prediction in
competitive airline markets [0.0]
We combine data from multiple sources, including competitor data, pricing, social media, safety and airline reviews.
We show that customer behavior can be categorized into price-sensitive, schedule-sensitive and comfort ODs.
This model produces forecasts that result in higher revenue than traditional, time series forecasts.
arXiv Detail & Related papers (2021-03-15T14:32:11Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.