論文の概要: Raidar: geneRative AI Detection viA Rewriting
- arxiv url: http://arxiv.org/abs/2401.12970v2
- Date: Sun, 14 Apr 2024 22:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 22:38:10.028072
- Title: Raidar: geneRative AI Detection viA Rewriting
- Title(参考訳): Raidar: GeneRative AI Detection viA 書き換え
- Authors: Chengzhi Mao, Carl Vondrick, Hao Wang, Junfeng Yang,
- Abstract要約: 大規模な言語モデル(LLM)は、書き直しのタスクを行う場合、AI生成テキストよりも人間の書き起こしテキストを変更する傾向にある。
テキストの書き直しを LLM に促し,出力の編集距離を計算することで,AI 生成コンテンツを検出する手法を提案する。
この結果から,機械自体のレンズを通した機械生成テキストのユニークなインプリントが明らかになった。
- 参考スコア(独自算出の注目度): 42.477151044325595
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
- Abstract(参考訳): 大規模な言語モデル(LLM)は、書き直しのタスクを行うと、AI生成テキストよりも人間の書き起こしテキストを変更する傾向にある。
この傾向は、LLMがAI生成したテキストを高品質と認識し、修正が少なくなるためである。
テキストの書き直しを LLM に促し,出力の編集距離を計算することで,AI 生成コンテンツを検出する手法を提案する。
我々は、ジェネレーティブAI検出viA書き換え方法Raidarと名づけた。
Raidarは、ニュース、クリエイティブな執筆、学生エッセイ、コード、Yelpのレビュー、arXivの論文など、さまざまな分野において、既存のAIコンテンツ検出モデルのF1検出スコアを最大29ポイント向上させる。
本手法は,高次元の特徴を持たない単語記号のみで動作し,ブラックボックスLLMと互換性があり,新しいコンテンツに対して本質的にロバストである。
この結果から,機械自体のレンズを通した機械生成テキストのユニークなインプリントが明らかになった。
関連論文リスト
- Leveraging Explainable AI for LLM Text Attribution: Differentiating Human-Written and Multiple LLMs-Generated Text [1.1137087573421256]
本研究では,生成型AI大言語モデルを用いて生成されたテキストコンテンツの検出と識別を支援することを目的とする。
我々はランダムフォレスト(RF)やリカレントニューラルネットワーク(RNN)などの機械学習アルゴリズムを利用して、属性の重要な特徴を理解する。
本手法は,1) 人文とAIテキストを区別するバイナリ分類と,2) 人文と5種類のLDMツールで生成するテキストを区別するマルチ分類に分けられる。
論文 参考訳(メタデータ) (2025-01-06T18:46:53Z) - GigaCheck: Detecting LLM-generated Content [72.27323884094953]
本稿では,GigaCheckを提案することによって生成したテキスト検出の課題について検討する。
本研究は,LLM生成テキストとLLM生成テキストを区別する手法と,Human-Machine協調テキストにおけるLLM生成間隔を検出する手法について検討する。
具体的には,テキスト内のAI生成間隔をローカライズするために,コンピュータビジョンから適応したDETRのような検出モデルと組み合わせて,微調整の汎用LLMを用いる。
論文 参考訳(メタデータ) (2024-10-31T08:30:55Z) - DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning [24.99797253885887]
このタスクを達成するための鍵は、異なる著者のスタイルを区別することにある、と我々は主張する。
DeTeCtiveは,マルチタスクの補助的,マルチレベルのコントラスト学習フレームワークである。
我々の手法はテキストエンコーダと互換性がある。
論文 参考訳(メタデータ) (2024-10-28T12:34:49Z) - RFBES at SemEval-2024 Task 8: Investigating Syntactic and Semantic
Features for Distinguishing AI-Generated and Human-Written Texts [0.8437187555622164]
本稿では、意味論と構文という2つの異なる側面からAIが生成するテキスト検出の問題について考察する。
マルチリンガルタスクとモノリンガルタスクの両方において,AI生成テキストと人書きテキストを高い精度で区別できるAIモデルを提案する。
論文 参考訳(メタデータ) (2024-02-19T00:40:17Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
大規模言語モデル(LLM)を用いた文書の合成による文レベル検出の課題について紹介する。
次に,文レベルのAIGT検出機能として,ホワイトボックスLEMのログ確率リストを利用した textbfSequence textbfX (Check) textbfGPT を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:18:53Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADARはパラフラザーと検出器の対向訓練に基づいている。
パラフレーズの目標は、AIテキスト検出を避けるために現実的なコンテンツを生成することである。
RADARは検出器からのフィードバックを使ってパラフラザーを更新する。
論文 参考訳(メタデータ) (2023-07-07T21:13:27Z) - Beyond Black Box AI-Generated Plagiarism Detection: From Sentence to
Document Level [4.250876580245865]
既存のAI生成テキスト分類器は精度が限られており、しばしば偽陽性を生成する。
自然言語処理(NLP)技術を用いた新しい手法を提案する。
与えられた質問の複数のパラフレーズ付きバージョンを生成し、それを大きな言語モデルに入力し、回答を生成する。
本研究では,コサイン類似度に基づくコントラスト的損失関数を用いて,生成文と学生の反応とをマッチングする。
論文 参考訳(メタデータ) (2023-06-13T20:34:55Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
大規模言語モデル(LLM)は、様々なアプリケーションで非常によく機能します。
盗作、偽ニュースの発生、スパムなどの活動においてこれらのモデルが誤用される可能性があることは、彼らの責任ある使用に対する懸念を引き起こしている。
我々は、攻撃者の存在下で、これらのAIテキスト検出装置の堅牢性を強調テストする。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。