CCA: Collaborative Competitive Agents for Image Editing
- URL: http://arxiv.org/abs/2401.13011v1
- Date: Tue, 23 Jan 2024 11:46:28 GMT
- Title: CCA: Collaborative Competitive Agents for Image Editing
- Authors: Tiankai Hang and Shuyang Gu and Dong Chen and Xin Geng and Baining Guo
- Abstract summary: This paper presents a novel generative model, Collaborative Competitive Agents (CCA)
It leverages the capabilities of multiple Large Language Models (LLMs) based agents to execute complex tasks.
The paper's main contributions include the introduction of a multi-agent-based generative model with controllable intermediate steps and iterative optimization.
- Score: 59.54347952062684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel generative model, Collaborative Competitive
Agents (CCA), which leverages the capabilities of multiple Large Language
Models (LLMs) based agents to execute complex tasks. Drawing inspiration from
Generative Adversarial Networks (GANs), the CCA system employs two equal-status
generator agents and a discriminator agent. The generators independently
process user instructions and generate results, while the discriminator
evaluates the outputs, and provides feedback for the generator agents to
further reflect and improve the generation results. Unlike the previous
generative model, our system can obtain the intermediate steps of generation.
This allows each generator agent to learn from other successful executions due
to its transparency, enabling a collaborative competition that enhances the
quality and robustness of the system's results. The primary focus of this study
is image editing, demonstrating the CCA's ability to handle intricate
instructions robustly. The paper's main contributions include the introduction
of a multi-agent-based generative model with controllable intermediate steps
and iterative optimization, a detailed examination of agent relationships, and
comprehensive experiments on image editing. Code is available at
\href{https://github.com/TiankaiHang/CCA}{https://github.com/TiankaiHang/CCA}.
Related papers
- Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks [39.084974125007165]
We introduce Magentic-One, a high-performing open-source agentic system for solving complex tasks.
Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, tracks progress, and re-plans to recover from errors.
We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks.
arXiv Detail & Related papers (2024-11-07T06:36:19Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Divide and Conquer: Language Models can Plan and Self-Correct for
Compositional Text-to-Image Generation [72.6168579583414]
CompAgent is a training-free approach for compositional text-to-image generation with a large language model (LLM) agent as its core.
Our approach achieves more than 10% improvement on T2I-CompBench, a comprehensive benchmark for open-world compositional T2I generation.
arXiv Detail & Related papers (2024-01-28T16:18:39Z) - Graph Convolutional Value Decomposition in Multi-Agent Reinforcement
Learning [9.774412108791218]
We propose a novel framework for value function factorization in deep reinforcement learning.
In particular, we consider the team of agents as the set of nodes of a complete directed graph.
We introduce a mixing GNN module, which is responsible for i) factorizing the team state-action value function into individual per-agent observation-action value functions, and ii) explicit credit assignment to each agent in terms of fractions of the global team reward.
arXiv Detail & Related papers (2020-10-09T18:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.