A Safe Reinforcement Learning Algorithm for Supervisory Control of Power
Plants
- URL: http://arxiv.org/abs/2401.13020v1
- Date: Tue, 23 Jan 2024 17:52:49 GMT
- Title: A Safe Reinforcement Learning Algorithm for Supervisory Control of Power
Plants
- Authors: Yixuan Sun, Sami Khairy, Richard B. Vilim, Rui Hu, Akshay J. Dave
- Abstract summary: Model-free Reinforcement learning (RL) has emerged as a promising solution for control tasks.
We propose a chance-constrained RL algorithm based on Proximal Policy Optimization for supervisory control.
Our approach achieves the smallest distance of violation and violation rate in a load-follow maneuver for an advanced Nuclear Power Plant design.
- Score: 7.1771300511732585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional control theory-based methods require tailored engineering for
each system and constant fine-tuning. In power plant control, one often needs
to obtain a precise representation of the system dynamics and carefully design
the control scheme accordingly. Model-free Reinforcement learning (RL) has
emerged as a promising solution for control tasks due to its ability to learn
from trial-and-error interactions with the environment. It eliminates the need
for explicitly modeling the environment's dynamics, which is potentially
inaccurate. However, the direct imposition of state constraints in power plant
control raises challenges for standard RL methods. To address this, we propose
a chance-constrained RL algorithm based on Proximal Policy Optimization for
supervisory control. Our method employs Lagrangian relaxation to convert the
constrained optimization problem into an unconstrained objective, where
trainable Lagrange multipliers enforce the state constraints. Our approach
achieves the smallest distance of violation and violation rate in a load-follow
maneuver for an advanced Nuclear Power Plant design.
Related papers
- Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to fluctuations in dynamic prices, demand consumption, and renewable-based energy generation.
By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' nature.
We propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation.
arXiv Detail & Related papers (2023-07-26T17:12:04Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
Reinforcement learning (RL) is a promising, upcoming topic in automatic control applications.
Initiative action state augmentation (IASA) for actor-critic-based RL controllers is introduced.
This augmentation does not require any expert knowledge, leaving the approach model free.
arXiv Detail & Related papers (2022-01-31T16:29:19Z) - Regret-optimal Estimation and Control [52.28457815067461]
We show that the regret-optimal estimator and regret-optimal controller can be derived in state-space form.
We propose regret-optimal analogs of Model-Predictive Control (MPC) and the Extended KalmanFilter (EKF) for systems with nonlinear dynamics.
arXiv Detail & Related papers (2021-06-22T23:14:21Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
Reinforcement learning (RL) is a control approach that can handle nonlinear optimal control problems.
Despite the promise exhibited, RL has yet to see marked translation to industrial practice.
We propose an 'oracle'-assisted constrained Q-learning algorithm that guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-11-16T13:16:22Z) - Constrained Model-based Reinforcement Learning with Robust Cross-Entropy
Method [30.407700996710023]
This paper studies the constrained/safe reinforcement learning problem with sparse indicator signals for constraint violations.
We employ the neural network ensemble model to estimate the prediction uncertainty and use model predictive control as the basic control framework.
The results show that our approach learns to complete the tasks with a much smaller number of constraint violations than state-of-the-art baselines.
arXiv Detail & Related papers (2020-10-15T18:19:35Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.