Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion
- URL: http://arxiv.org/abs/2002.09676v1
- Date: Sat, 22 Feb 2020 10:15:53 GMT
- Title: Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion
- Authors: Siddhant Gangapurwala, Alexander Mitchell and Ioannis Havoutis
- Abstract summary: We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
- Score: 78.46388769788405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep reinforcement learning (RL) uses model-free techniques to optimize
task-specific control policies. Despite having emerged as a promising approach
for complex problems, RL is still hard to use reliably for real-world
applications. Apart from challenges such as precise reward function tuning,
inaccurate sensing and actuation, and non-deterministic response, existing RL
methods do not guarantee behavior within required safety constraints that are
crucial for real robot scenarios. In this regard, we introduce guided
constrained policy optimization (GCPO), an RL framework based upon our
implementation of constrained proximal policy optimization (CPPO) for tracking
base velocity commands while following the defined constraints. We also
introduce schemes which encourage state recovery into constrained regions in
case of constraint violations. We present experimental results of our training
method and test it on the real ANYmal quadruped robot. We compare our approach
against the unconstrained RL method and show that guided constrained RL offers
faster convergence close to the desired optimum resulting in an optimal, yet
physically feasible, robotic control behavior without the need for precise
reward function tuning.
Related papers
- Constrained Reinforcement Learning Under Model Mismatch [18.05296241839688]
Existing studies on constrained reinforcement learning (RL) may obtain a well-performing policy in the training environment.
However, when deployed in a real environment, it may easily violate constraints that were originally satisfied during training because there might be model mismatch between the training and real environments.
We develop a Robust Constrained Policy Optimization (RCPO) algorithm, which is the first algorithm that applies to large/continuous state space and has theoretical guarantees on worst-case reward improvement and constraint violation at each iteration during the training.
arXiv Detail & Related papers (2024-05-02T14:31:52Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - CACTO: Continuous Actor-Critic with Trajectory Optimization -- Towards
global optimality [5.0915256711576475]
This paper presents a novel algorithm for the continuous control of dynamical systems that combines Trayy (TO) and Reinforcement Learning (RL) in a single trajectory.
arXiv Detail & Related papers (2022-11-12T10:16:35Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks [59.419152768018506]
We show that any optimal policy necessarily satisfies the k-SP constraint.
We propose a novel cost function that penalizes the policy violating SP constraint, instead of completely excluding it.
Our experiments on MiniGrid, DeepMind Lab, Atari, and Fetch show that the proposed method significantly improves proximal policy optimization (PPO)
arXiv Detail & Related papers (2021-07-13T21:39:21Z) - Model-based Safe Reinforcement Learning using Generalized Control
Barrier Function [6.556257209888797]
This paper proposes a model-based feasibility enhancement technique of constrained RL.
By using the model information, the policy can be optimized safely without violating actual safety constraints.
The proposed method achieves up to four times fewer constraint violations and converges 3.36 times faster than baseline constrained RL approaches.
arXiv Detail & Related papers (2021-03-02T08:17:38Z) - Learning Off-Policy with Online Planning [18.63424441772675]
We investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function.
We show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments.
arXiv Detail & Related papers (2020-08-23T16:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.