Distributional Counterfactual Explanation With Optimal Transport
- URL: http://arxiv.org/abs/2401.13112v3
- Date: Sat, 25 May 2024 07:20:59 GMT
- Title: Distributional Counterfactual Explanation With Optimal Transport
- Authors: Lei You, Lele Cao, Mattias Nilsson, Bo Zhao, Lei Lei,
- Abstract summary: Counterfactual explanations (CE) are the de facto method of providing insight and interpretability in black-box decision-making models.
This paper extends the concept of CE to a distributional context, broadening the scope from individual data points to entire input and output distributions.
In DCE, we take the stakeholder's perspective and shift focus to analyzing the distributional properties of the factual and counterfactual.
- Score: 7.597676579494146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations (CE) are the de facto method of providing insight and interpretability in black-box decision-making models by identifying alternative input instances that lead to different outcomes. This paper extends the concept of CE to a distributional context, broadening the scope from individual data points to entire input and output distributions, named distributional counterfactual explanation (DCE). In DCE, we take the stakeholder's perspective and shift focus to analyzing the distributional properties of the factual and counterfactual, drawing parallels to the classical approach of assessing individual instances and their resulting decisions. We leverage optimal transport (OT) to frame a chance-constrained optimization problem, aiming to derive a counterfactual distribution that closely aligns with its factual counterpart, substantiated by statistical confidence. Our proposed optimization method, Discount, strategically balances this confidence in both the input and output distributions. This algorithm is accompanied by an analysis of its convergence rate. The efficacy of our proposed method is substantiated through a series of quantitative and qualitative experiments, highlighting its potential to provide deep insights into decision-making models.
Related papers
- A Semiparametric Approach to Causal Inference [2.092897805817524]
In causal inference, an important problem is to quantify the effects of interventions or treatments.
In this paper, we employ a semiparametric density ratio model (DRM) to characterize the counterfactual distributions.
Our model offers flexibility by avoiding strict parametric assumptions on the counterfactual distributions.
arXiv Detail & Related papers (2024-11-01T18:03:38Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Refining Counterfactual Explanations With Joint-Distribution-Informed Shapley Towards Actionable Minimality [6.770853093478073]
Counterfactual explanations (CE) identify data points that closely resemble the observed data but produce different machine learning (ML) model outputs.
Existing CE methods often lack actionable efficiency because of unnecessary feature changes included within the explanations.
We propose a method that minimizes the required feature changes while maintaining the validity of CE.
arXiv Detail & Related papers (2024-10-07T18:31:19Z) - Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
Individual treatment effect offers the most granular measure of treatment effect on an individual level.
We propose a novel conformal diffusion model-based approach that addresses those intricate challenges.
arXiv Detail & Related papers (2024-08-02T21:35:08Z) - Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with
Differentiable Expected Calibration Error [50.86671887712424]
The prevalence of domain adaptive semantic segmentation has prompted concerns regarding source domain data leakage.
To circumvent the requirement for source data, source-free domain adaptation has emerged as a viable solution.
We propose a novel calibration-guided source-free domain adaptive semantic segmentation framework.
arXiv Detail & Related papers (2023-08-06T03:28:34Z) - Statistical Inference Under Constrained Selection Bias [20.862583584531322]
We propose a framework that enables statistical inference in the presence of selection bias.
The output is high-probability bounds on the value of an estimand for the target distribution.
We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks.
arXiv Detail & Related papers (2023-06-05T23:05:26Z) - FairDP: Certified Fairness with Differential Privacy [59.56441077684935]
This paper introduces FairDP, a novel mechanism designed to achieve certified fairness with differential privacy (DP)
FairDP independently trains models for distinct individual groups, using group-specific clipping terms to assess and bound the disparate impacts of DP.
Extensive theoretical and empirical analyses validate the efficacy of FairDP and improved trade-offs between model utility, privacy, and fairness compared with existing methods.
arXiv Detail & Related papers (2023-05-25T21:07:20Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.