Brief Theory of Multiqubit Measurement
- URL: http://arxiv.org/abs/2401.13122v3
- Date: Wed, 12 Jun 2024 03:09:48 GMT
- Title: Brief Theory of Multiqubit Measurement
- Authors: Constantin Usenko,
- Abstract summary: It is shown that the von Neumann projectors produce an idea of a phase portrait of qudit state as a set of mathematical expectations for projectors on the possible pure states.
The entanglement is represented by the dependence of the shape of conditional phase portrait on the properties of the observable used in the measurement for the other particle.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Peculiarities of multiqubit measurement are for the most part similar to peculiarities of measurement for qudit -- quantum object with finite-dimensional Hilbert space. Three different interpretations of measurement concept are analysed. One of those is purely quantum and is in collection, for a given state of the object to be measured, of incompatible observable measurement results in amount enough for reconstruction of the state. Two others make evident the difference between the reduced density matrix and the density matrices of physical objects involved in the measurement. It is shown that the von Neumann projectors produce an idea of a phase portrait of qudit state as a set of mathematical expectations for projectors on the possible pure states. The phase portrait includes probability distributions for all the resolutions of identity of the qudit observable algebra. The phase portrait of a composite system comprised by a qudit pair generates local and conditional phase portraits of particles. The entanglement is represented by the dependence of the shape of conditional phase portrait on the properties of the observable used in the measurement for the other particle. Analysis of the properties of a conditional phase portrait of a multiqubit qubits shows that absence of the entanglement is possible only in the case of substantial restrictions imposed on the method of multiqubit decomposition into qubits.
Related papers
- Observable-projected ensembles [0.0]
We introduce a new measurement scheme that produces an ensemble of mixed states in a subsystem.
We refer to this as the observable-projected ensemble.
As a first step in exploring the observable-projected ensemble, we investigate its entanglement properties in conformal field theory.
arXiv Detail & Related papers (2024-10-28T18:02:26Z) - Classifying One-Dimensional Quantum States Prepared by a Single Round of Measurements [0.0]
We characterize the patterns of many-body entanglement that can be deterministically created from measurement.
We show this creates matrix product states and identify necessary and sufficient tensor conditions for preparability.
We find a trade-off between the richness of the preparable entanglement spectrum and correlation functions, which leads to a no-go theorem for preparing certain quantum states.
arXiv Detail & Related papers (2024-04-25T17:10:22Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Simulability of high-dimensional quantum measurements [0.0]
We demand that the statistics obtained from $mathcalM$ and an arbitrary quantum state $rho$ are recovered exactly by first compressing $rho$ into a lower dimensional space.
A full quantum compression is possible, if and only if the set $mathcalM$ is jointly measurable.
We analytically construct optimal simulation models for all projective measurements subjected to white noise or losses.
arXiv Detail & Related papers (2022-02-25T21:22:29Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum Phase Diagrams of Matter-Field Hamiltonians I: Fidelity, Bures
Distance, and Entanglement [0.0]
A general procedure is established to calculate the quantum phase diagrams for finite matter-field Hamiltonian models.
The existence of a quantum phase diagram for a finite system can be established.
arXiv Detail & Related papers (2020-02-06T19:55:55Z) - Parallelity of mixed quantum ensembles [0.0]
A unifying framework for identifying distance and holonomy for decompositions of density operators is introduced.
A gauge invariant spectral geometric phase for discrete sequences of mixed quantum states is obtained as the phase of the trace of the spectral holonomy.
arXiv Detail & Related papers (2020-01-17T15:06:26Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.