Deep Spatiotemporal Clutter Filtering of Transthoracic Echocardiographic Images: Leveraging Contextual Attention and Residual Learning
- URL: http://arxiv.org/abs/2401.13147v2
- Date: Wed, 12 Feb 2025 18:15:16 GMT
- Title: Deep Spatiotemporal Clutter Filtering of Transthoracic Echocardiographic Images: Leveraging Contextual Attention and Residual Learning
- Authors: Mahdi Tabassian, Somayeh Akbari, Sandro Queirós, Jan D'hooge,
- Abstract summary: This study presents a deep convolutional autoencoder network for filtering clutter from transthoracic echo (TTE) image sequences.
The trained network processes a TTE sequence in a fraction of a second, enabling real-time filtering and potentially improving the precision of clinically relevant indices.
- Score: 0.28238789039503054
- License:
- Abstract: This study presents a deep convolutional autoencoder network for filtering reverberation clutter from transthoracic echocardiographic (TTE) image sequences. Given the spatiotemporal nature of this type of clutter, the filtering network employs 3D convolutional layers to suppress it throughout the cardiac cycle. The design of the network incorporates two key features that contribute to the effectiveness of the filter: 1) an attention mechanism for focusing on cluttered regions and leveraging contextual information, and 2) residual learning for preserving fine image structures. To train the network, a diverse set of artifact patterns was simulated and superimposed onto ultra-realistic synthetic TTE sequences from six ultrasound vendors, generating input for the filtering network. The artifact-free sequences served as ground-truth. Performance of the filtering network was evaluated using unseen synthetic and in vivo artifactual sequences. Results from the in vivo dataset confirmed the network's strong generalization capabilities, despite being trained solely on synthetic data and simulated artifacts. The suitability of the filtered sequences for downstream processing was assessed by computing segmental strain curves. A significant reduction in the discrepancy between strain profiles computed from cluttered and clutter-free segments was observed after filtering the cluttered sequences with the proposed network. The trained network processes a TTE sequence in a fraction of a second, enabling real-time clutter filtering and potentially improving the precision of clinically relevant indices derived from TTE sequences. The source code of the proposed method and example video files of the filtering results are available at: \href{https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main}{https://github.com/MahdiTabassian/Deep-Clutter-Filtering/tree/main}.
Related papers
- FilterNet: Harnessing Frequency Filters for Time Series Forecasting [34.83702192033196]
FilterNet is built upon our proposed learnable frequency filters to extract key informative temporal patterns by selectively passing or attenuating certain components of time series signals.
equipped with the two filters, FilterNet can approximately surrogate the linear and attention mappings widely adopted in time series literature.
arXiv Detail & Related papers (2024-11-03T16:20:41Z) - IterativePFN: True Iterative Point Cloud Filtering [18.51768749680731]
A fundamental 3D vision task is the removal of noise, known as point cloud filtering or denoising.
We propose IterativePFN (iterative point cloud filtering network), which consists of multiple Iterations that model the true iterative filtering process internally.
Our method is able to obtain better performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-04-04T04:47:44Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Assessing Streamline Plausibility Through Randomized Iterative
Spherical-Deconvolution Informed Tractogram Filtering [0.0]
Tractography has become an indispensable part of brain connectivity studies.
Streamlines in tractograms produced by state-of-the-art tractography methods are anatomically implausible.
This study takes a closer look at one such method, textitSpherical-decon Informed Filtering of Tractograms (SIFT)
We propose applying SIFT to randomly selected tractogram subsets in order to retrieve multiple assessments for each streamline.
arXiv Detail & Related papers (2022-05-10T12:36:30Z) - Batch Normalization Tells You Which Filter is Important [49.903610684578716]
We propose a simple yet effective filter pruning method by evaluating the importance of each filter based on the BN parameters of pre-trained CNNs.
The experimental results on CIFAR-10 and ImageNet demonstrate that the proposed method can achieve outstanding performance.
arXiv Detail & Related papers (2021-12-02T12:04:59Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - Unsharp Mask Guided Filtering [53.14430987860308]
The goal of this paper is guided image filtering, which emphasizes the importance of structure transfer during filtering.
We propose a new and simplified formulation of the guided filter inspired by unsharp masking.
Our formulation enjoys a filtering prior to a low-pass filter and enables explicit structure transfer by estimating a single coefficient.
arXiv Detail & Related papers (2021-06-02T19:15:34Z) - SCOP: Scientific Control for Reliable Neural Network Pruning [127.20073865874636]
This paper proposes a reliable neural network pruning algorithm by setting up a scientific control.
Redundant filters can be discovered in the adversarial process of different features.
Our method can reduce 57.8% parameters and 60.2% FLOPs of ResNet-101 with only 0.01% top-1 accuracy loss on ImageNet.
arXiv Detail & Related papers (2020-10-21T03:02:01Z) - Filter Grafting for Deep Neural Networks: Reason, Method, and
Cultivation [86.91324735966766]
Filter is the key component in modern convolutional neural networks (CNNs)
In this paper, we introduce filter grafting (textbfMethod) to achieve this goal.
We develop a novel criterion to measure the information of filters and an adaptive weighting strategy to balance the grafted information among networks.
arXiv Detail & Related papers (2020-04-26T08:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.