Coherent Two-photon Backscattering and Induced Angular Quantum
Correlations in Multiple-Scattered Two-Photon States of the Light
- URL: http://arxiv.org/abs/2401.13176v1
- Date: Wed, 24 Jan 2024 01:48:16 GMT
- Title: Coherent Two-photon Backscattering and Induced Angular Quantum
Correlations in Multiple-Scattered Two-Photon States of the Light
- Authors: Nooshin M. Estakhri, Theodore B. Norris
- Abstract summary: coherent two-photon backscattering is a manifestation of weak localization.
Quantum correlations in backscattering are investigated for finite three-dimensional disordered structures.
We show that by increasing the disordered material density, the width of the coherent two-photon backscattering cones increases.
- Score: 0.65268245109828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the emergence of coherent two-photon backscattering, a
manifestation of weak localization, in multiple scattering of maximally
entangled pure and fully mixed two-photon states and examine the effect of
entanglement and classical correlations. Quantum correlations in backscattering
are investigated for finite three-dimensional disordered structures in the weak
localization regime as well as systems of a small number of scatterers with
specified spatial arrangements. No assumptions are made on the statistical
behavior of the scattering matrix elements. Furthermore, we study the interplay
between quantum correlations induced by multiple scattering and the
correlations that may be present in the illumination fields, and how they are
manifested in the output modes. We study the effect of the dimensionality of
the entanglement and the angular distribution of the jointly measurable photon
pairs on the emergence of enhancement and angular quantum correlations and show
how quantum correlations can be used as a probe of the entanglement
dimensionality. We show that by increasing the disordered material density, the
width of the coherent two-photon backscattering cones increases, in accordance
with the reduction of the mean free path length within the structure.
Related papers
- Quantum-fluctuation asymmetry in multiphoton Jaynes-Cummings resonances [0.0]
We explore the statistical behavior of the light emanating from a coherently driven Jaynes-Cummings (JC) oscillator operating in the regime of multiphoton blockade.
We find that monitoring different quadratures of the cavity field in conditional homodyne detection affects the times waited between successive photon counter clicks''
Despite the fact that the steady-state cavity occupation is of the order of a photon, monitoring of the developing bimodality also impacts on the ratio between the emissions directed along the two decoherence channels.
arXiv Detail & Related papers (2024-05-22T12:48:59Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Visualizing the breakdown of quantum multimodality in coherently driven
light-matter interaction [0.0]
We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum multimodality.
We also reveal two coexistent quantum beats in the intensity correlation function of the forwards scattered photons.
arXiv Detail & Related papers (2022-06-22T16:31:39Z) - Coherent Backscattering of Entangled Photon Pairs [0.22369578015657957]
We show that multiply-scattered entangled photons reflected from a dynamic complex medium remain partially correlated.
This work points to opportunities for entanglement transport despite dynamic multiple scattering in complex systems.
arXiv Detail & Related papers (2022-03-17T23:05:32Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Coherence of resonant light-matter interaction in the strong-coupling
limit [0.0]
We derive analytical expressions for the spectrum and the intensity correlation function for photons scattered by the two-state atom coupled to the coherently driven cavity mode.
We increase the driving field amplitude and approach the critical point organizing a second-order dissipative quantum phase transition.
arXiv Detail & Related papers (2021-05-27T13:17:28Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.