How to Collaborate: Towards Maximizing the Generalization Performance in
Cross-Silo Federated Learning
- URL: http://arxiv.org/abs/2401.13236v1
- Date: Wed, 24 Jan 2024 05:41:34 GMT
- Title: How to Collaborate: Towards Maximizing the Generalization Performance in
Cross-Silo Federated Learning
- Authors: Yuchang Sun and Marios Kountouris and Jun Zhang
- Abstract summary: Federated clustering (FL) has vivid attention as a privacy-preserving distributed learning framework.
In this work, we focus on cross-silo FL, where clients become the model owners after FL data.
We formulate that the performance of a client can be improved only by collaborating with other clients that have more training data.
- Score: 12.86056968708516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has attracted vivid attention as a privacy-preserving
distributed learning framework. In this work, we focus on cross-silo FL, where
clients become the model owners after training and are only concerned about the
model's generalization performance on their local data. Due to the data
heterogeneity issue, asking all the clients to join a single FL training
process may result in model performance degradation. To investigate the
effectiveness of collaboration, we first derive a generalization bound for each
client when collaborating with others or when training independently. We show
that the generalization performance of a client can be improved only by
collaborating with other clients that have more training data and similar data
distribution. Our analysis allows us to formulate a client utility maximization
problem by partitioning clients into multiple collaborating groups. A
hierarchical clustering-based collaborative training (HCCT) scheme is then
proposed, which does not need to fix in advance the number of groups. We
further analyze the convergence of HCCT for general non-convex loss functions
which unveils the effect of data similarity among clients. Extensive
simulations show that HCCT achieves better generalization performance than
baseline schemes, whereas it degenerates to independent training and
conventional FL in specific scenarios.
Related papers
- A Bayesian Framework for Clustered Federated Learning [14.426129993432193]
One of the main challenges of federated learning (FL) is handling non-independent and identically distributed (non-IID) client data.
We present a unified Bayesian framework for clustered FL which associates clients to clusters.
This work provides insights on client-cluster associations and enables client knowledge sharing in new ways.
arXiv Detail & Related papers (2024-10-20T19:11:24Z) - Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients [8.773068878015856]
Federated learning (FL) is an appealing paradigm that allows a group of machines (a.k.a. clients) to learn collectively while keeping their data local.
We consider an FL setting where some clients can be adversarial, and we derive conditions under which full collaboration fails.
arXiv Detail & Related papers (2024-09-30T14:31:19Z) - Balancing Similarity and Complementarity for Federated Learning [91.65503655796603]
Federated Learning (FL) is increasingly important in mobile and IoT systems.
One key challenge in FL is managing statistical heterogeneity, such as non-i.i.d. data.
We introduce a novel framework, textttFedSaC, which balances similarity and complementarity in FL cooperation.
arXiv Detail & Related papers (2024-05-16T08:16:19Z) - Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
In Federated Learning (FL), the distributed nature and heterogeneity of client data present both opportunities and challenges.
We introduce a novel algorithm that assigns adaptive aggregation weights to clients participating in FL training, identifying those with data distributions most conducive to a specific learning objective.
arXiv Detail & Related papers (2024-02-07T17:46:37Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Personalized Federated Learning by Structured and Unstructured Pruning
under Data Heterogeneity [3.291862617649511]
We propose a new approach for obtaining a personalized model from a client-level objective.
To realize this personalization, we leverage finding a small subnetwork for each client.
arXiv Detail & Related papers (2021-05-02T22:10:46Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.