Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients
- URL: http://arxiv.org/abs/2409.20329v1
- Date: Mon, 30 Sep 2024 14:31:19 GMT
- Title: Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients
- Authors: Youssef Allouah, Abdellah El Mrini, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot,
- Abstract summary: Federated learning (FL) is an appealing paradigm that allows a group of machines (a.k.a. clients) to learn collectively while keeping their data local.
We consider an FL setting where some clients can be adversarial, and we derive conditions under which full collaboration fails.
- Score: 8.773068878015856
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated learning (FL) is an appealing paradigm that allows a group of machines (a.k.a. clients) to learn collectively while keeping their data local. However, due to the heterogeneity between the clients' data distributions, the model obtained through the use of FL algorithms may perform poorly on some client's data. Personalization addresses this issue by enabling each client to have a different model tailored to their own data while simultaneously benefiting from the other clients' data. We consider an FL setting where some clients can be adversarial, and we derive conditions under which full collaboration fails. Specifically, we analyze the generalization performance of an interpolated personalized FL framework in the presence of adversarial clients, and we precisely characterize situations when full collaboration performs strictly worse than fine-tuned personalization. Our analysis determines how much we should scale down the level of collaboration, according to data heterogeneity and the tolerable fraction of adversarial clients. We support our findings with empirical results on mean estimation and binary classification problems, considering synthetic and benchmark image classification datasets.
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - How to Collaborate: Towards Maximizing the Generalization Performance in
Cross-Silo Federated Learning [12.86056968708516]
Federated clustering (FL) has vivid attention as a privacy-preserving distributed learning framework.
In this work, we focus on cross-silo FL, where clients become the model owners after FL data.
We formulate that the performance of a client can be improved only by collaborating with other clients that have more training data.
arXiv Detail & Related papers (2024-01-24T05:41:34Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
We introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning.
Specifically, we propose a novel algorithm called emphFedABML, which employs hierarchical variational inference across clients.
Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data.
arXiv Detail & Related papers (2023-07-05T11:58:58Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - When to Trust Aggregated Gradients: Addressing Negative Client Sampling
in Federated Learning [41.51682329500003]
We propose a novel learning rate adaptation mechanism to adjust the server learning rate for the aggregated gradient in each round.
We make theoretical deductions to find a meaningful and robust indicator that is positively related to the optimal server learning rate.
arXiv Detail & Related papers (2023-01-25T03:52:45Z) - Federated Graph-based Sampling with Arbitrary Client Availability [34.95352685954059]
We propose a framework named Federated Graph-based Sampling (FedGS) to stabilize the global model update and mitigate the long-term bias given arbitrary client availability simultaneously.
Our experimental results confirm FedGS's advantage in both enabling a fair client-sampling scheme and improving the model performance under arbitrary client availability.
arXiv Detail & Related papers (2022-11-25T09:38:20Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data [20.757477553095637]
Federated learning (FL) is a privacy-promoting framework that enables clients to collaboratively train machine learning models.
A major challenge in federated learning arises when the local data is heterogeneous.
We propose FedDPMS, an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations.
arXiv Detail & Related papers (2022-06-01T18:00:48Z) - Federated Noisy Client Learning [105.00756772827066]
Federated learning (FL) collaboratively aggregates a shared global model depending on multiple local clients.
Standard FL methods ignore the noisy client issue, which may harm the overall performance of the aggregated model.
We propose Federated Noisy Client Learning (Fed-NCL), which is a plug-and-play algorithm and contains two main components.
arXiv Detail & Related papers (2021-06-24T11:09:17Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.