Continuous Variable Based Quantum Communication in the Ocean
- URL: http://arxiv.org/abs/2401.13243v1
- Date: Wed, 24 Jan 2024 06:09:20 GMT
- Title: Continuous Variable Based Quantum Communication in the Ocean
- Authors: Ramniwas Meena and Subhashish Banerjee
- Abstract summary: This work investigates the impact of turbulence on the transmission of Gaussian light beams used in a continuous variable-based quantum key distribution system for underwater quantum communication.
We adopt the widely accepted ABCD matrix formalism, which provides a comprehensive framework for characterizing the propagation of optical beams through different media.
A numerical simulation framework is developed to assess the resulting losses and evaluate the performance of the proposed system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous Variable-Based Quantum Cryptography (CV-QKD) is an emerging field
in quantum information science, offering unprecedented security for
communication protocols by harnessing the principles of quantum mechanics.
However, ocean environments pose unique challenges to quantum communication due
to their distinct properties and characteristics. This work investigates the
impact of turbulence on the transmission of Gaussian light beams used in a
continuous variable-based quantum key distribution system for underwater
quantum communication. The objective is to quantitatively analyze the induced
losses and propose methodologies to mitigate their effects. To achieve this, we
adopt the widely accepted ABCD matrix formalism, which provides a comprehensive
framework for characterizing the propagation of optical beams through different
media. Moreover, a numerical simulation framework is developed to assess the
resulting losses and evaluate the performance of the proposed system. The
implications of these numerical simulation frameworks for the design and
optimization of quantum communication systems for oceanic environments are
thoroughly discussed.
Related papers
- Dynamics of Quantum Coherence and Non-Classical Correlations in Open Quantum System Coupled to a Squeezed Thermal Bath [0.0]
We investigate the dynamics of quantum coherence and non-classical correlations in a two-qubit open quantum system coupled to a squeezed thermal reservoir.
Our findings demonstrate that non-classical correlations such as quantum consonance, quantum discord, local quantum uncertainty, and quantum Fisher information are highly sensitive to the collective regime.
This work bridges theoretical advancements with real-world applications, offering a comprehensive framework for leveraging quantum resources under the influence of environmental decoherence.
arXiv Detail & Related papers (2024-12-19T14:46:09Z) - Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures [61.25494706587422]
The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are discussed.
We conclude with a set of promising future research ideas in the field of ultimately secure quantum communications.
arXiv Detail & Related papers (2024-12-01T22:28:02Z) - Physical Layer Aspects of Quantum Communications: A Survey [31.406787669796184]
Quantum communication systems support unique applications in the form of distributed quantum computing, distributed quantum sensing, and several cryptographic protocols.
Main enabler in these communication systems is an efficient infrastructure that is capable to transport unknown quantum states with high rate and fidelity.
Despite the fundamental differences between the classic and quantum worlds, there exist universal communication concepts that may proven beneficial in quantum communication systems as well.
arXiv Detail & Related papers (2024-07-12T13:16:47Z) - Quantum reservoir probing: an inverse paradigm of quantum reservoir computing for exploring quantum many-body physics [0.0]
This study proposes a reciprocal research direction: probing quantum systems themselves through their information processing performance.
Building upon this concept, here we develop quantum reservoir probing (QRP), an inverse extension of the Quantum Reservoir Computing (QRC) paradigm.
Unifying quantum information and quantum matter, the QRP holds great promise as a potent tool for exploring various aspects of quantum many-body physics.
arXiv Detail & Related papers (2023-08-02T01:26:36Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.