論文の概要: UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion
- arxiv url: http://arxiv.org/abs/2401.13388v3
- Date: Thu, 6 Jun 2024 13:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 00:00:12.523229
- Title: UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion
- Title(参考訳): UNIMO-G:マルチモーダル条件拡散による統一画像生成
- Authors: Wei Li, Xue Xu, Jiachen Liu, Xinyan Xiao,
- Abstract要約: UNIMO-Gは条件付き拡散フレームワークであり、インターリーブされたテキストと視覚入力を持つマルチモーダルプロンプトで動作する。
テキスト・ツー・イメージ生成とゼロショット・テーマ駆動合成の両面で優れている。
- 参考スコア(独自算出の注目度): 36.06457895469353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing text-to-image diffusion models primarily generate images from text prompts. However, the inherent conciseness of textual descriptions poses challenges in faithfully synthesizing images with intricate details, such as specific entities or scenes. This paper presents UNIMO-G, a simple multimodal conditional diffusion framework that operates on multimodal prompts with interleaved textual and visual inputs, which demonstrates a unified ability for both text-driven and subject-driven image generation. UNIMO-G comprises two core components: a Multimodal Large Language Model (MLLM) for encoding multimodal prompts, and a conditional denoising diffusion network for generating images based on the encoded multimodal input. We leverage a two-stage training strategy to effectively train the framework: firstly pre-training on large-scale text-image pairs to develop conditional image generation capabilities, and then instruction tuning with multimodal prompts to achieve unified image generation proficiency. A well-designed data processing pipeline involving language grounding and image segmentation is employed to construct multi-modal prompts. UNIMO-G excels in both text-to-image generation and zero-shot subject-driven synthesis, and is notably effective in generating high-fidelity images from complex multimodal prompts involving multiple image entities.
- Abstract(参考訳): 既存のテキスト間の拡散モデルでは、主にテキストプロンプトから画像を生成する。
しかし、テキスト記述の本質的な簡潔さは、特定の実体や場面のような複雑な詳細で忠実に画像を合成する上での課題を生じさせる。
本稿では,テキスト駆動と主観駆動の両画像生成の統一性を実証した,複数モーダルプロンプトで動作するシンプルなマルチモーダル条件拡散フレームワークであるUNIMO-Gを提案する。
UNIMO-Gは、マルチモーダルプロンプトを符号化するMultimodal Large Language Model(MLLM)と、符号化されたマルチモーダル入力に基づいて画像を生成する条件付きデノナイズ拡散ネットワークの2つのコアコンポーネントから構成される。
まず、大規模テキストイメージペアで事前トレーニングを行い、条件付き画像生成機能を開発し、次にマルチモーダルプロンプトでチューニングを行い、統合された画像生成能力を実現する。
言語接地とイメージセグメンテーションを含む、よく設計されたデータ処理パイプラインを用いて、マルチモーダルプロンプトを構築する。
UNIMO-Gは、テキスト・ツー・イメージ生成とゼロショット・サブジェクト駆動合成の両方に優れており、複数の画像エンティティを含む複雑なマルチモーダルプロンプトから高忠実な画像を生成するのに特に有効である。
関連論文リスト
- SEED-Story: Multimodal Long Story Generation with Large Language Model [66.37077224696242]
SEED-Storyは、MLLM(Multimodal Large Language Model)を利用して拡張マルチモーダルストーリーを生成する新しい手法である。
マルチモーダルアテンションシンク機構を提案し,最大25個のストーリー(トレーニング用10個)を高い効率で自動回帰的に生成する。
本稿では,大規模かつ高解像度なStoryStreamというデータセットを提案する。
論文 参考訳(メタデータ) (2024-07-11T17:21:03Z) - MM-Interleaved: Interleaved Image-Text Generative Modeling via Multi-modal Feature Synchronizer [106.79844459065828]
本稿では,画像テキストデータのエンドツーエンド生成モデルであるMM-Interleavedを提案する。
マルチスケールおよびマルチイメージ機能同期モジュールを導入し、以前のコンテキストできめ細かい画像機能に直接アクセスできるようにする。
MM-Interleavedはマルチモーダルな指示に従って視覚的詳細を認識し、テキストと視覚の両方の条件に従って一貫した画像を生成する。
論文 参考訳(メタデータ) (2024-01-18T18:50:16Z) - Instruct-Imagen: Image Generation with Multi-modal Instruction [90.04481955523514]
Instruct-imagenは、不均一な画像生成タスクに取り組み、目に見えないタスクを一般化するモデルである。
画像生成のための*multi-modal instruction*を導入する。
画像生成データセットの人間による評価では、インストラクション・イメージはドメイン内の以前のタスク固有のモデルと一致するか、超えている。
論文 参考訳(メタデータ) (2024-01-03T19:31:58Z) - De-Diffusion Makes Text a Strong Cross-Modal Interface [33.90004746543745]
我々は、事前訓練されたテキスト-画像拡散モデルを用いてデコードを行うオートエンコーダを用いる。
画像を表すDe-Diffusionテキストの精度と包括性を検証する実験。
単一のDe-Diffusionモデルは、さまざまなテキスト・トゥ・イメージツールに対して転送可能なプロンプトを提供するために一般化することができる。
論文 参考訳(メタデータ) (2023-11-01T16:12:40Z) - ZRIGF: An Innovative Multimodal Framework for Zero-Resource
Image-Grounded Dialogue Generation [17.310200022696016]
ZRIGFは2段階の学習戦略を実装し、対照的な事前学習と生成的事前学習を含む。
テキストベースと画像グラウンドの対話データセットを用いた総合的な実験は、ZRIGFが文脈的に関連する情報的応答を生成するのに有効であることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:28:36Z) - Emu: Generative Pretraining in Multimodality [43.759593451544546]
トランスフォーマーベースのマルチモーダル基礎モデルは、マルチモーダルコンテキストで画像やテキストをシームレスに生成することができる。
Emuは、画像からテキストまでのタスクとテキストから画像へのタスクの両方のための汎用マルチモーダルインターフェースとして機能する。
Emuは最先端の大規模マルチモーダルモデルと比較して非常に高い性能を示す。
論文 参考訳(メタデータ) (2023-07-11T12:45:39Z) - Generating Images with Multimodal Language Models [78.6660334861137]
本稿では,凍結したテキストのみの大規模言語モデルを,事前学習した画像エンコーダとデコーダモデルで融合する手法を提案する。
本モデルでは,画像検索,新しい画像生成,マルチモーダル対話など,多モーダルな機能群を示す。
論文 参考訳(メタデータ) (2023-05-26T19:22:03Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
本稿では, 特定対象を含む画像と共同テキストを入力シーケンスとして用いた, Unified Multi-Modal Latent Diffusion (UMM-Diffusion) を提案する。
より具体的には、入力テキストと画像の両方を1つの統一マルチモーダル潜在空間に符号化する。
入力テキストと画像の両面から複雑な意味を持つ高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-03-16T13:50:20Z) - Towards Open-World Text-Guided Face Image Generation and Manipulation [52.83401421019309]
顔画像生成と操作の両方に統一的なフレームワークを提案する。
本手法は,画像とテキストの両方を含むオープンワールドシナリオをサポートし,再トレーニングや微調整,後処理は行わない。
論文 参考訳(メタデータ) (2021-04-18T16:56:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。