SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval
- URL: http://arxiv.org/abs/2401.13478v2
- Date: Tue, 11 Jun 2024 10:18:08 GMT
- Title: SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval
- Authors: Siwei Wu, Yizhi Li, Kang Zhu, Ge Zhang, Yiming Liang, Kaijing Ma, Chenghao Xiao, Haoran Zhang, Bohao Yang, Wenhu Chen, Wenhao Huang, Noura Al Moubayed, Jie Fu, Chenghua Lin,
- Abstract summary: Current benchmarks for evaluating MMIR performance in image-text pairing within the scientific domain show a notable gap.
We develop a specialised scientific MMIR benchmark by leveraging open-access paper collections.
This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions in scientific documents.
- Score: 64.03631654052445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal information retrieval (MMIR) is a rapidly evolving field, where significant progress, particularly in image-text pairing, has been made through advanced representation learning and cross-modality alignment research. However, current benchmarks for evaluating MMIR performance in image-text pairing within the scientific domain show a notable gap, where chart and table images described in scholarly language usually do not play a significant role. To bridge this gap, we develop a specialised scientific MMIR (SciMMIR) benchmark by leveraging open-access paper collections to extract data relevant to the scientific domain. This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions in scientific documents. We further annotate the image-text pairs with two-level subset-subcategory hierarchy annotations to facilitate a more comprehensive evaluation of the baselines. We conducted zero-shot and fine-tuning evaluations on prominent multi-modal image-captioning and visual language models, such as CLIP and BLIP. Our analysis offers critical insights for MMIR in the scientific domain, including the impact of pre-training and fine-tuning settings and the influence of the visual and textual encoders. All our data and checkpoints are publicly available at https://github.com/Wusiwei0410/SciMMIR.
Related papers
- MatViX: Multimodal Information Extraction from Visually Rich Articles [6.349779979863784]
In materials science, extracting structured information from research articles can accelerate the discovery of new materials.
We introduce textscMatViX, a benchmark consisting of $324$ full-length research articles and $1,688$ complex structured files.
These files are extracted from text, tables, and figures in full-length documents, providing a comprehensive challenge for MIE.
arXiv Detail & Related papers (2024-10-27T16:13:58Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers [43.18330795060871]
SPIQA is a dataset specifically designed to interpret complex figures and tables within the context of scientific research articles.
We employ automatic and manual curation to create the dataset.
SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits.
arXiv Detail & Related papers (2024-07-12T16:37:59Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Multimodal Deep Learning for Scientific Imaging Interpretation [0.0]
This study presents a novel methodology to linguistically emulate and evaluate human-like interactions with Scanning Electron Microscopy (SEM) images.
Our approach distills insights from both textual and visual data harvested from peer-reviewed articles.
Our model (GlassLLaVA) excels in crafting accurate interpretations, identifying key features, and detecting defects in previously unseen SEM images.
arXiv Detail & Related papers (2023-09-21T20:09:22Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation.
We propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting.
arXiv Detail & Related papers (2023-05-19T14:56:57Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
We conducted a comprehensive evaluation of Large Multimodal Models, such as GPT4V and Gemini, in various text-related visual tasks.
OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available.
arXiv Detail & Related papers (2023-05-13T11:28:37Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.