SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers
- URL: http://arxiv.org/abs/2407.09413v1
- Date: Fri, 12 Jul 2024 16:37:59 GMT
- Title: SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers
- Authors: Shraman Pramanick, Rama Chellappa, Subhashini Venugopalan,
- Abstract summary: SPIQA is a dataset specifically designed to interpret complex figures and tables within the context of scientific research articles.
We employ automatic and manual curation to create the dataset.
SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits.
- Score: 43.18330795060871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seeking answers to questions within long scientific research articles is a crucial area of study that aids readers in quickly addressing their inquiries. However, existing question-answering (QA) datasets based on scientific papers are limited in scale and focus solely on textual content. To address this limitation, we introduce SPIQA (Scientific Paper Image Question Answering), the first large-scale QA dataset specifically designed to interpret complex figures and tables within the context of scientific research articles across various domains of computer science. Leveraging the breadth of expertise and ability of multimodal large language models (MLLMs) to understand figures, we employ automatic and manual curation to create the dataset. We craft an information-seeking task involving multiple images that cover a wide variety of plots, charts, tables, schematic diagrams, and result visualizations. SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits. Through extensive experiments with 12 prominent foundational models, we evaluate the ability of current multimodal systems to comprehend the nuanced aspects of research articles. Additionally, we propose a Chain-of-Thought (CoT) evaluation strategy with in-context retrieval that allows fine-grained, step-by-step assessment and improves model performance. We further explore the upper bounds of performance enhancement with additional textual information, highlighting its promising potential for future research and the dataset's impact on revolutionizing how we interact with scientific literature.
Related papers
- MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Towards Robust Evaluation: A Comprehensive Taxonomy of Datasets and Metrics for Open Domain Question Answering in the Era of Large Language Models [0.0]
Open Domain Question Answering (ODQA) within natural language processing involves building systems that answer factual questions using large-scale knowledge corpora.
High-quality datasets are used to train models on realistic scenarios.
Standardized metrics facilitate comparisons between different ODQA systems.
arXiv Detail & Related papers (2024-06-19T05:43:02Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval [64.03631654052445]
Current benchmarks for evaluating MMIR performance in image-text pairing within the scientific domain show a notable gap.
We develop a specialised scientific MMIR benchmark by leveraging open-access paper collections.
This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions in scientific documents.
arXiv Detail & Related papers (2024-01-24T14:23:12Z) - Around the GLOBE: Numerical Aggregation Question-Answering on
Heterogeneous Genealogical Knowledge Graphs with Deep Neural Networks [0.934612743192798]
We present a new end-to-end methodology for numerical aggregation QA for genealogical trees.
The proposed architecture, GLOBE, outperforms the state-of-the-art models and pipelines by achieving 87% accuracy for this task.
This study may have practical implications for genealogical information centers and museums.
arXiv Detail & Related papers (2023-07-30T12:09:00Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence.
We present Multi-Modal Reasoning(COCO-MMR) dataset, a novel dataset that encompasses an extensive collection of open-ended questions.
We propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders.
arXiv Detail & Related papers (2023-07-24T08:58:25Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language.
We introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages and 16,558 question-answer pairs.
We develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions.
arXiv Detail & Related papers (2022-07-25T01:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.