Separable Physics-Informed Neural Networks for the solution of
elasticity problems
- URL: http://arxiv.org/abs/2401.13486v1
- Date: Wed, 24 Jan 2024 14:34:59 GMT
- Title: Separable Physics-Informed Neural Networks for the solution of
elasticity problems
- Authors: Vasiliy A. Es'kin, Danil V. Davydov, Julia V. Gur'eva, Alexey O.
Malkhanov, Mikhail E. Smorkalov
- Abstract summary: A method for solving elasticity problems based on separable physics-informed neural networks (SPINN) in conjunction with the deep energy method (DEM) is presented.
Numerical experiments have been carried out for a number of problems showing that this method has a significantly higher convergence rate and accuracy than the vanilla physics-informed neural networks (PINN) and even SPINN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A method for solving elasticity problems based on separable physics-informed
neural networks (SPINN) in conjunction with the deep energy method (DEM) is
presented. Numerical experiments have been carried out for a number of problems
showing that this method has a significantly higher convergence rate and
accuracy than the vanilla physics-informed neural networks (PINN) and even
SPINN based on a system of partial differential equations (PDEs). In addition,
using the SPINN in the framework of DEM approach it is possible to solve
problems of the linear theory of elasticity on complex geometries, which is
unachievable with the help of PINNs in frames of partial differential
equations. Considered problems are very close to the industrial problems in
terms of geometry, loading, and material parameters.
Related papers
- Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
We propose a novel framework based on graph neural networks (GNNs) and radial basis function finite difference (RBF-FD)
RBF-FD is used to construct a high-precision difference format of the differential equations to guide model training.
We illustrate the generalizability, accuracy, and efficiency of the proposed algorithms on different PDE parameters.
arXiv Detail & Related papers (2022-12-06T10:08:02Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems.
The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations.
arXiv Detail & Related papers (2022-08-19T04:26:40Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
We explore an application of the Physics Informed Neural Networks (PINNs) in conjunction with Airy stress functions and Fourier series.
We find that enriching feature space using Airy stress functions can significantly improve the accuracy of PINN solutions for biharmonic PDEs.
arXiv Detail & Related papers (2021-08-16T17:19:50Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.