論文の概要: Delocate: Detection and Localization for Deepfake Videos with Randomly-Located Tampered Traces
- arxiv url: http://arxiv.org/abs/2401.13516v4
- Date: Sun, 5 May 2024 12:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 23:55:35.873009
- Title: Delocate: Detection and Localization for Deepfake Videos with Randomly-Located Tampered Traces
- Title(参考訳): Delocate: ランダムに位置決めされたトレーパー付きディープフェイクビデオの検出と位置決め
- Authors: Juan Hu, Xin Liao, Difei Gao, Satoshi Tsutsui, Qian Wang, Zheng Qin, Mike Zheng Shou,
- Abstract要約: Delocateは、未知のドメインのDeepfakeビデオの認識とローカライズが可能な、新しいDeepfake検出モデルである。
広範に使用されている4つのベンチマークデータセットに対する実験により、乱れ領域のローカライズに限らず、ドメイン間検出性能も向上することが示された。
- 参考スコア(独自算出の注目度): 33.37448000992396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake videos are becoming increasingly realistic, showing few tampering traces on facial areasthat vary between frames. Consequently, existing Deepfake detection methods struggle to detect unknown domain Deepfake videos while accurately locating the tampered region. To address thislimitation, we propose Delocate, a novel Deepfake detection model that can both recognize andlocalize unknown domain Deepfake videos. Ourmethod consists of two stages named recoveringand localization. In the recovering stage, the modelrandomly masks regions of interest (ROIs) and reconstructs real faces without tampering traces, leading to a relatively good recovery effect for realfaces and a poor recovery effect for fake faces. Inthe localization stage, the output of the recoveryphase and the forgery ground truth mask serve assupervision to guide the forgery localization process. This process strategically emphasizes the recovery phase of fake faces with poor recovery, facilitating the localization of tampered regions. Ourextensive experiments on four widely used benchmark datasets demonstrate that Delocate not onlyexcels in localizing tampered areas but also enhances cross-domain detection performance.
- Abstract(参考訳): ディープフェイクビデオはますます現実的になりつつあり、フレームごとに異なる顔領域の痕跡がほとんど見当たらない。
その結果、既存のDeepfake検出手法では、未知のドメインのDeepfakeビデオを検出するのに苦労し、改ざんされた領域を正確に特定する。
そこで本研究では,未知のドメインのDeepfakeビデオの認識とローカライズが可能なDelocateという,新しいDeepfake検出モデルを提案する。
OurmethodはRecovering and Localizationという2つのステージから構成される。
回復段階において、モデルランダムは興味のある領域(ROI)を隠蔽し、痕跡を改ざんすることなく実際の顔を再構築する。
ローカライゼーション段階において、リカバリフェーズの出力とフォージェリーグラウンドの真理マスクは、フォージェリーローカライゼーションプロセスの導出を補助する。
このプロセスは、偽の顔の回復段階と回復不良を戦略的に強調し、改ざんされた領域の局所化を容易にする。
広範に使用されている4つのベンチマークデータセットの大規模な実験により、乱れ領域のローカライズに限らず、クロスドメイン検出性能も向上することが示された。
関連論文リスト
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Recap: Detecting Deepfake Video with Unpredictable Tampered Traces via
Recovering Faces and Mapping Recovered Faces [35.04806736119123]
本稿では,顔の復元による非特異な顔部分の不整合を露呈する新しいディープフェイク検出モデルRecapを提案する。
回復段階において、モデルは興味のある領域をランダムにマスキングし、予測不能な痕跡を残さずに実際の顔を再構築することに焦点を当てる。
マッピング段階では、リカバリフェーズの出力が顔マッピングプロセスの指針となる。
論文 参考訳(メタデータ) (2023-08-19T06:18:11Z) - Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization [30.317619885984005]
本稿では,視覚的セグメンテーション基盤モデル,すなわちセグメンテーションモデル(SAM)をフォージェリ検出とローカライゼーションの対面に導入する。
SAMに基づいて,Multiscale Adapterを用いたDADFフレームワークを提案する。
提案するフレームワークは、エンドツーエンドのフォージェリーローカライゼーションと検出最適化をシームレスに統合する。
論文 参考訳(メタデータ) (2023-06-29T16:25:04Z) - Cross-Domain Local Characteristic Enhanced Deepfake Video Detection [18.430287055542315]
ディープフェイク検出はセキュリティ上の懸念から注目を集めている。
多くの検出器は、目に見えない操作を検出する際に正確な結果を得ることができない。
そこで我々は,より一般的なディープフェイクビデオ検出のための新しいパイプラインであるクロスドメインローカルフォレスティクスを提案する。
論文 参考訳(メタデータ) (2022-11-07T07:44:09Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
近年の顔偽造技術は、ほとんど追跡不可能なディープフェイクビデオを生み出しており、悪意のある意図で活用することができる。
従来の研究では、ディープフェイク法にまたがる一般化を追求する上で、局所的な低レベルな手がかりと時間的情報の重要性が指摘されてきた。
本稿では,局所的・時間的変換をベースとしたDeepfake Detectionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-06T16:46:30Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
本稿では,画像中の偽造顔を効率的に検出する,概念的にシンプルだが効果的な方法を提案する。
提案手法は,画像に関する意味の高い意味情報を提供するセグメンテーションマップに依存する。
提案モデルでは,最先端検出精度と顕著なローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2021-07-13T02:59:31Z) - Detection of Deepfake Videos Using Long Distance Attention [73.6659488380372]
既存のほとんどの検出方法は、問題をバニラ二項分類問題として扱う。
本稿では,偽顔と実顔の相違が非常に微妙であるため,特にきめ細かな分類問題として扱われる。
大域的な視点で空間的・時間的偽の痕跡を捉えるための2つの要素を持つ時空間モデルを提案する。
論文 参考訳(メタデータ) (2021-06-24T08:33:32Z) - DeepFake Detection Based on the Discrepancy Between the Face and its
Context [94.47879216590813]
単一画像における顔のスワップやその他のアイデンティティ操作を検出する手法を提案する。
提案手法は, (i) 厳密なセマンティックセグメンテーションによって境界付けられた顔領域を考慮した顔識別ネットワークと, (ii) 顔コンテキストを考慮したコンテキスト認識ネットワークの2つのネットワークを含む。
本稿では,2つのネットワークからの認識信号を用いて,そのような不一致を検出する手法について述べる。
提案手法は,FaceForensics++,Celeb-DF-v2,DFDCベンチマークを用いて顔検出を行い,未知の手法で生成した偽物の検出を一般化する。
論文 参考訳(メタデータ) (2020-08-27T17:04:46Z) - FakeLocator: Robust Localization of GAN-Based Face Manipulations [19.233930372590226]
本稿では,FakeLocatorと呼ばれる新しいアプローチを提案する。
これは、GANベースのフェイクローカライゼーション問題をグレースケールのフェイクネスマップで解決する最初の試みである。
人気の高いFaceForensics++,DFFDデータセット,および7種類の最先端のGANベースの顔生成手法による実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-01-27T06:15:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。