論文の概要: Stream-based perception for cognitive agents in mobile ecosystems
- arxiv url: http://arxiv.org/abs/2401.13604v1
- Date: Wed, 24 Jan 2024 17:14:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-25 13:54:15.516550
- Title: Stream-based perception for cognitive agents in mobile ecosystems
- Title(参考訳): モバイルエコシステムにおける認知エージェントのストリームベース知覚
- Authors: Jeremias D\"otterl, Ralf Bruns, J\"urgen Dunkel, Sascha Ossowski
- Abstract要約: 我々は,低レベルのセンサデータストリームにおいて,エージェントが意味のある状況を認識するためのストリームベースの認識手法を提案する。
スマートフォンのセンサデータから得られた状況が、エージェントが合意に達するために使用するオークションをトリガーし、ガイドする方法を示す。
- 参考スコア(独自算出の注目度): 0.7865191493201839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive agent abstractions can help to engineer intelligent systems across
mobile devices. On smartphones, the data obtained from onboard sensors can give
valuable insights into the user's current situation. Unfortunately, today's
cognitive agent frameworks cannot cope well with the challenging
characteristics of sensor data. Sensor data is located on a low abstraction
level and the individual data elements are not meaningful when observed in
isolation. In contrast, cognitive agents operate on high-level percepts and
lack the means to effectively detect complex spatio-temporal patterns in
sequences of multiple percepts. In this paper, we present a stream-based
perception approach that enables the agents to perceive meaningful situations
in low-level sensor data streams. We present a crowdshipping case study where
autonomous, self-interested agents collaborate to deliver parcels to their
destinations. We show how situations derived from smartphone sensor data can
trigger and guide auctions, which the agents use to reach agreements.
Experiments with real smartphone data demonstrate the benefits of stream-based
agent perception.
- Abstract(参考訳): 認知エージェント抽象化は、モバイルデバイスにまたがるインテリジェントなシステムを構築するのに役立つ。
スマートフォンでは、オンボードセンサーから得られるデータは、ユーザの現在の状況に関する貴重な洞察を与えることができる。
残念なことに、今日のcognitive agentフレームワークは、センサデータの困難な特性にうまく対応できない。
センサデータは抽象レベルが低く、個々のデータ要素は分離して観測しても意味がない。
対照的に、認知エージェントは高レベルの知覚で作用し、複数の知覚配列における複雑な時空間パターンを効果的に検出する手段が欠如している。
本稿では,低レベルのセンサデータストリームにおいて,エージェントが有意義な状況を知覚できるストリームベースの知覚手法を提案する。
我々は,自律的,利己的なエージェントが協力して荷物を目的地に届ける,クラウドシッピング・ケーススタディを提案する。
スマートフォンのセンサデータから得られた状況が、エージェントが合意に達するために使用するオークションをトリガーし、ガイドする方法を示す。
実際のスマートフォンデータによる実験は、ストリームベースのエージェント認識の利点を示している。
関連論文リスト
- Robust Collaborative Perception without External Localization and Clock Devices [52.32342059286222]
複数のエージェントをまたいだ一貫した空間的時間的調整は、協調的な知覚の基礎である。
従来の手法は、ローカライゼーションとクロック信号を提供するために外部デバイスに依存している。
本稿では,様々なエージェントの知覚データに内在する幾何学的パターンを認識して整列する手法を提案する。
論文 参考訳(メタデータ) (2024-05-05T15:20:36Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
本研究は,マルチエージェント認識システムにおいて,特定のGPS信号が容易に誤認できるかどうかを考察する。
我々は,システム内の個々のエージェントに対してステルス性を持つ逆GPS信号を生成可能なtextscAdvGPSを紹介する。
OPV2Vデータセットに対する実験により、これらの攻撃が最先端の手法の性能を著しく損なうことを示した。
論文 参考訳(メタデータ) (2024-01-30T23:13:41Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
エージェントAI(Agent AI)とは、視覚刺激や言語入力、その他の環境データを知覚できる対話型システムである。
我々は,バーチャルリアリティやシミュレートされたシーンを容易に作成し,仮想環境内に具体化されたエージェントと対話できる未来を構想する。
論文 参考訳(メタデータ) (2024-01-07T19:11:18Z) - Incremental Semi-supervised Federated Learning for Health Inference via
Mobile Sensing [5.434366992553875]
我々は,段階的な半教師付きフェデレート学習アルゴリズムであるFedMobileを提案する。
インフルエンザ様症状認識のための実世界のモバイルセンシングデータセットを用いてFedMobileを評価した。
論文 参考訳(メタデータ) (2023-12-19T23:39:33Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
スマートホームにおけるヒューマンアクティビティ認識(HAR)のためのグラフ誘導ニューラルネットワーク手法を提案する。
スマートホームにおけるセンサネットワークを表す,より表現力のあるグラフ構造を学習することで,これを実現する。
本手法は,アテンション機構の適用により,個別の入力センサ計測を特徴空間にマッピングする。
論文 参考訳(メタデータ) (2023-11-16T02:43:13Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
ウェアラブルセンサーによる人間の活動認識の進歩を支えている重要な問題は、多様なラベル付きトレーニングデータの利用不可能である。
本研究では,ウェアラブルセンサを用いた人間行動認識に特化して最適化された,教師なしの統計的特徴誘導拡散モデルを提案する。
平均,標準偏差,Zスコア,歪などの統計情報に拡散モデルを適用し,多種多様な合成センサデータを生成する。
論文 参考訳(メタデータ) (2023-05-30T15:12:59Z) - Anomaly Detection and Inter-Sensor Transfer Learning on Smart
Manufacturing Datasets [6.114996271792091]
スマートマニュファクチャリングシステムの目標は、運用コストを削減し、ダウンタイムをなくすために、失敗を迅速に検出(または予測)することである。
これはしばしば、システムから取得したセンサーの日程内で異常を検出することに起因する。
スマートマニュファクチャリングアプリケーションドメインは、ある種の健全な技術的課題を提起します。
予測的障害分類が達成できることを示し、予測的メンテナンスの道を開く。
論文 参考訳(メタデータ) (2022-06-13T17:51:24Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
本稿では,映像ストリーム中のピクセルワイズ表現を段階的かつ自律的に開発するための,ニューラルネットワークに基づく新しいアプローチを提案する。
提案手法は, 参加者の入場地を観察することで, エージェントが学習できる, 人間の様の注意機構に基づく。
実験では,3次元仮想環境を利用して,映像ストリームを観察することで,エージェントが物体の識別を学べることを示す。
論文 参考訳(メタデータ) (2022-04-26T09:52:31Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
センサデータとセンサモデルの間に留まるパーソナルエッジプラットフォームであるSensiXを紹介する。
動作および音声に基づくマルチデバイスセンシングシステムの開発において,その有効性を示す。
評価の結果,SensiXは3mWのオーバヘッドを犠牲にして,全体の精度が7~13%向上し,環境のダイナミクスが最大30%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-04T23:06:56Z) - Self-Supervised Transformers for Activity Classification using Ambient
Sensors [3.1829446824051195]
本稿では,環境センサを用いた環境下での居住者の活動の分類手法を提案する。
また,自己教師付き方式でトランスフォーマーを事前訓練する手法を,ハイブリッドオートエンコーダ分類モデルとして提案する。
論文 参考訳(メタデータ) (2020-11-22T20:46:25Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。